Rasha M. El-Gohary , Nagi M. El-Shafai , Ibrahim M. El-Mehasseb , Heba I. Ghamry , Mohammad Y. Alshahrani , Amr M. Beltagi
{"title":"设计纳米表面负载二氧化硅和二氧化钛的质子纳米结构,通过光催化和电化学技术生产洁净水","authors":"Rasha M. El-Gohary , Nagi M. El-Shafai , Ibrahim M. El-Mehasseb , Heba I. Ghamry , Mohammad Y. Alshahrani , Amr M. Beltagi","doi":"10.1016/j.materresbull.2024.113120","DOIUrl":null,"url":null,"abstract":"<div><div>The work is targeted to rebuild the framework of a nanocatalyst (NCat) that depends on the n/p-type heterojunction through the plasmonic structure of reduced graphene oxide (rGO), silicon oxide nanoparticles (SiO<sub>2</sub> NPs), polyvinyl alcohol (PVA NPs), and titanium dioxide (TiO<sub>2</sub> NPs). The removal of medical and organic contaminants occurs via photocatalysis operation which follows through the electrochemical technique and UV-spectrophotometer under visible light with nanocatalyst (rGO@SiO<sub>2</sub>@PVA@TiO<sub>2</sub>) for clean water and a safe medical environment. The Z-Scheme mechanism explains the development of electron maps in fabricated nanocatalyst engineering to increase the efficiency of the photocatalytic activity. The high activity of the NCat appeared, after 160 min, and the photocatalytic efficiency for methylene blue (MB), methyl orange (MO), rhodamine B (RhB), moxifloxacin (MFX), and colchicine, was 90 %, 76 %, 88 %, 84 %, and 91 % respectively. The stability of NCat was confirmed via the recyclability process, with the efficiency at 58 % after the fifth cycle. The high stability of NCat was proved by the electrochemical technique performed after 100 cycles. The safety of the NCat for the generation of clean water was highlighted by the cytotoxicity test using normal mouse liver cells. It is suggested to use the new NCat design because of its distinctive optical characteristics, which make it a viable candidate for use as a revolutionary nanomaterial with high efficiency and safety for clean water and removal of medical contaminants.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"182 ","pages":"Article 113120"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design plasmonic nanostructure of silicon dioxide and titanium dioxide loaded on a nano surface for clean water production through photocatalysis and electrochemical techniques\",\"authors\":\"Rasha M. El-Gohary , Nagi M. El-Shafai , Ibrahim M. El-Mehasseb , Heba I. Ghamry , Mohammad Y. Alshahrani , Amr M. Beltagi\",\"doi\":\"10.1016/j.materresbull.2024.113120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The work is targeted to rebuild the framework of a nanocatalyst (NCat) that depends on the n/p-type heterojunction through the plasmonic structure of reduced graphene oxide (rGO), silicon oxide nanoparticles (SiO<sub>2</sub> NPs), polyvinyl alcohol (PVA NPs), and titanium dioxide (TiO<sub>2</sub> NPs). The removal of medical and organic contaminants occurs via photocatalysis operation which follows through the electrochemical technique and UV-spectrophotometer under visible light with nanocatalyst (rGO@SiO<sub>2</sub>@PVA@TiO<sub>2</sub>) for clean water and a safe medical environment. The Z-Scheme mechanism explains the development of electron maps in fabricated nanocatalyst engineering to increase the efficiency of the photocatalytic activity. The high activity of the NCat appeared, after 160 min, and the photocatalytic efficiency for methylene blue (MB), methyl orange (MO), rhodamine B (RhB), moxifloxacin (MFX), and colchicine, was 90 %, 76 %, 88 %, 84 %, and 91 % respectively. The stability of NCat was confirmed via the recyclability process, with the efficiency at 58 % after the fifth cycle. The high stability of NCat was proved by the electrochemical technique performed after 100 cycles. The safety of the NCat for the generation of clean water was highlighted by the cytotoxicity test using normal mouse liver cells. It is suggested to use the new NCat design because of its distinctive optical characteristics, which make it a viable candidate for use as a revolutionary nanomaterial with high efficiency and safety for clean water and removal of medical contaminants.</div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"182 \",\"pages\":\"Article 113120\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025540824004495\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540824004495","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Design plasmonic nanostructure of silicon dioxide and titanium dioxide loaded on a nano surface for clean water production through photocatalysis and electrochemical techniques
The work is targeted to rebuild the framework of a nanocatalyst (NCat) that depends on the n/p-type heterojunction through the plasmonic structure of reduced graphene oxide (rGO), silicon oxide nanoparticles (SiO2 NPs), polyvinyl alcohol (PVA NPs), and titanium dioxide (TiO2 NPs). The removal of medical and organic contaminants occurs via photocatalysis operation which follows through the electrochemical technique and UV-spectrophotometer under visible light with nanocatalyst (rGO@SiO2@PVA@TiO2) for clean water and a safe medical environment. The Z-Scheme mechanism explains the development of electron maps in fabricated nanocatalyst engineering to increase the efficiency of the photocatalytic activity. The high activity of the NCat appeared, after 160 min, and the photocatalytic efficiency for methylene blue (MB), methyl orange (MO), rhodamine B (RhB), moxifloxacin (MFX), and colchicine, was 90 %, 76 %, 88 %, 84 %, and 91 % respectively. The stability of NCat was confirmed via the recyclability process, with the efficiency at 58 % after the fifth cycle. The high stability of NCat was proved by the electrochemical technique performed after 100 cycles. The safety of the NCat for the generation of clean water was highlighted by the cytotoxicity test using normal mouse liver cells. It is suggested to use the new NCat design because of its distinctive optical characteristics, which make it a viable candidate for use as a revolutionary nanomaterial with high efficiency and safety for clean water and removal of medical contaminants.
期刊介绍:
Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.