{"title":"脂质体与肺癌的双样本孟德尔随机研究","authors":"Zhang Fan","doi":"10.1016/j.jpba.2024.116514","DOIUrl":null,"url":null,"abstract":"<div><div>We analyzed the potential relationship between liposomes and lung cancer risk for the first time using MR analysis methods. The results showed that sterol ester, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, sphingomyelin, and triacylglycerol may affect lung cancer risk. However, molecules with different fatty acid compositions also affect lung cancer risk differently. These results may help researchers discover more mechanisms by which lipid metabolism disorders support lung cancer growth and potential targets of lipid metabolism, giving more theoretical support to lung cancer therapeutic approaches that target lipid metabolic pathways.</div></div>","PeriodicalId":16685,"journal":{"name":"Journal of pharmaceutical and biomedical analysis","volume":"252 ","pages":"Article 116514"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A two‑sample Mendelian randomization study of lipidome and lung cancer\",\"authors\":\"Zhang Fan\",\"doi\":\"10.1016/j.jpba.2024.116514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We analyzed the potential relationship between liposomes and lung cancer risk for the first time using MR analysis methods. The results showed that sterol ester, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, sphingomyelin, and triacylglycerol may affect lung cancer risk. However, molecules with different fatty acid compositions also affect lung cancer risk differently. These results may help researchers discover more mechanisms by which lipid metabolism disorders support lung cancer growth and potential targets of lipid metabolism, giving more theoretical support to lung cancer therapeutic approaches that target lipid metabolic pathways.</div></div>\",\"PeriodicalId\":16685,\"journal\":{\"name\":\"Journal of pharmaceutical and biomedical analysis\",\"volume\":\"252 \",\"pages\":\"Article 116514\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of pharmaceutical and biomedical analysis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0731708524005569\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical and biomedical analysis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0731708524005569","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A two‑sample Mendelian randomization study of lipidome and lung cancer
We analyzed the potential relationship between liposomes and lung cancer risk for the first time using MR analysis methods. The results showed that sterol ester, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, sphingomyelin, and triacylglycerol may affect lung cancer risk. However, molecules with different fatty acid compositions also affect lung cancer risk differently. These results may help researchers discover more mechanisms by which lipid metabolism disorders support lung cancer growth and potential targets of lipid metabolism, giving more theoretical support to lung cancer therapeutic approaches that target lipid metabolic pathways.
期刊介绍:
This journal is an international medium directed towards the needs of academic, clinical, government and industrial analysis by publishing original research reports and critical reviews on pharmaceutical and biomedical analysis. It covers the interdisciplinary aspects of analysis in the pharmaceutical, biomedical and clinical sciences, including developments in analytical methodology, instrumentation, computation and interpretation. Submissions on novel applications focusing on drug purity and stability studies, pharmacokinetics, therapeutic monitoring, metabolic profiling; drug-related aspects of analytical biochemistry and forensic toxicology; quality assurance in the pharmaceutical industry are also welcome.
Studies from areas of well established and poorly selective methods, such as UV-VIS spectrophotometry (including derivative and multi-wavelength measurements), basic electroanalytical (potentiometric, polarographic and voltammetric) methods, fluorimetry, flow-injection analysis, etc. are accepted for publication in exceptional cases only, if a unique and substantial advantage over presently known systems is demonstrated. The same applies to the assay of simple drug formulations by any kind of methods and the determination of drugs in biological samples based merely on spiked samples. Drug purity/stability studies should contain information on the structure elucidation of the impurities/degradants.