Emine Şirin , Çağrı Vakkas Yıldırım , Şenol Şirin , Turgay Kıvak , Murat Sarıkaya
{"title":"全面分析 Ti6Al4V 合金持续铣削过程中的切削温度、刀具磨损、表面完整性和摩擦学特性:LN2、纳米流体和混合加工","authors":"Emine Şirin , Çağrı Vakkas Yıldırım , Şenol Şirin , Turgay Kıvak , Murat Sarıkaya","doi":"10.1016/j.jmapro.2024.09.120","DOIUrl":null,"url":null,"abstract":"<div><div>Despite being expensive and difficult to process, the Ti6Al4V alloy is a vital component for crucial industries. To improve its machinability and accomplish sustainable production, environmentally friendly cooling and lubricating agencies are used. Studies on the machinability of the alloy are still necessary because of its unique features and significance in vital industries like aerospace, defense, and medicine. Therefore, this investigation focuses on tool wear, temperature, and surface integrity for sustainable milling Ti6Al4V under various machining environments, i.e., dry, pure-MQL, LN<sub>2</sub>, hBN, CuO-doped nanofluids, and hybrid methods. The produced nanofluids' thermophysical and rheological characteristics were examined in the study's initial phase. Because of the results from the first stage, machining performance indicators were assessed in the subsequent milling experiments. As a result, CuO-doped nanofluids gave improved results in terms of viscosity and pH. The best results obtained in the LN<sub>2</sub> + CuO hybrid cooling lubrication environment in important machinability outcomes such as tool wear and surface integrity were attributed to the rheological properties of CuO-doped nanofluid and its harmonious cooperation with LN<sub>2</sub>-cryogenic cooling.</div></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":"131 ","pages":"Pages 1360-1371"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive analysis of cutting temperature, tool wear, surface integrity and tribological properties in sustainable milling of Ti6Al4V alloy: LN2, nanofluid and hybrid machining\",\"authors\":\"Emine Şirin , Çağrı Vakkas Yıldırım , Şenol Şirin , Turgay Kıvak , Murat Sarıkaya\",\"doi\":\"10.1016/j.jmapro.2024.09.120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Despite being expensive and difficult to process, the Ti6Al4V alloy is a vital component for crucial industries. To improve its machinability and accomplish sustainable production, environmentally friendly cooling and lubricating agencies are used. Studies on the machinability of the alloy are still necessary because of its unique features and significance in vital industries like aerospace, defense, and medicine. Therefore, this investigation focuses on tool wear, temperature, and surface integrity for sustainable milling Ti6Al4V under various machining environments, i.e., dry, pure-MQL, LN<sub>2</sub>, hBN, CuO-doped nanofluids, and hybrid methods. The produced nanofluids' thermophysical and rheological characteristics were examined in the study's initial phase. Because of the results from the first stage, machining performance indicators were assessed in the subsequent milling experiments. As a result, CuO-doped nanofluids gave improved results in terms of viscosity and pH. The best results obtained in the LN<sub>2</sub> + CuO hybrid cooling lubrication environment in important machinability outcomes such as tool wear and surface integrity were attributed to the rheological properties of CuO-doped nanofluid and its harmonious cooperation with LN<sub>2</sub>-cryogenic cooling.</div></div>\",\"PeriodicalId\":16148,\"journal\":{\"name\":\"Journal of Manufacturing Processes\",\"volume\":\"131 \",\"pages\":\"Pages 1360-1371\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing Processes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1526612524010417\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Processes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1526612524010417","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Comprehensive analysis of cutting temperature, tool wear, surface integrity and tribological properties in sustainable milling of Ti6Al4V alloy: LN2, nanofluid and hybrid machining
Despite being expensive and difficult to process, the Ti6Al4V alloy is a vital component for crucial industries. To improve its machinability and accomplish sustainable production, environmentally friendly cooling and lubricating agencies are used. Studies on the machinability of the alloy are still necessary because of its unique features and significance in vital industries like aerospace, defense, and medicine. Therefore, this investigation focuses on tool wear, temperature, and surface integrity for sustainable milling Ti6Al4V under various machining environments, i.e., dry, pure-MQL, LN2, hBN, CuO-doped nanofluids, and hybrid methods. The produced nanofluids' thermophysical and rheological characteristics were examined in the study's initial phase. Because of the results from the first stage, machining performance indicators were assessed in the subsequent milling experiments. As a result, CuO-doped nanofluids gave improved results in terms of viscosity and pH. The best results obtained in the LN2 + CuO hybrid cooling lubrication environment in important machinability outcomes such as tool wear and surface integrity were attributed to the rheological properties of CuO-doped nanofluid and its harmonious cooperation with LN2-cryogenic cooling.
期刊介绍:
The aim of the Journal of Manufacturing Processes (JMP) is to exchange current and future directions of manufacturing processes research, development and implementation, and to publish archival scholarly literature with a view to advancing state-of-the-art manufacturing processes and encouraging innovation for developing new and efficient processes. The journal will also publish from other research communities for rapid communication of innovative new concepts. Special-topic issues on emerging technologies and invited papers will also be published.