Tianci Li , Dongyun Zhang , Lele Zhang , Thomas Schopphoven , Andres Gasser , Reinhart Poprawe
{"title":"传统和极高速激光材料沉积法制造的 AISI 4140 的热特征及其对其性能的影响","authors":"Tianci Li , Dongyun Zhang , Lele Zhang , Thomas Schopphoven , Andres Gasser , Reinhart Poprawe","doi":"10.1016/j.jmapro.2024.09.092","DOIUrl":null,"url":null,"abstract":"<div><div>The extreme high-speed laser material deposition (EHLA) process has the potential to enable additive manufacturing for mass production by overcoming the limitations of slow scanning speed in conventional laser material deposition (LMD) processes. Thermal features are the key factors to link process and properties. A sound understanding of process-thermal-property relationships is essential for performance control and process optimization of a deposited component. In this study, we studied the thermal characteristics within a single layer and among layers for continuous processing using the numerical method, and reveal the mechanism of microstructure and hardness changes of AISI 4140 material formed by EHLA and LMD processes through the analysis of thermal properties and temperature history results. The grain size and hardness evolution for both processes during single-layer cladding and continuous forming processes were investigated. The results revealed that the grain refinement effect in continuous LMD processing is stronger than that in EHLA process (from 30.0 μm for single layer to 3.2 μm for multi layers vs. from 18.6 μm for single layer to 2.2 μm for multi layers). Similar hardness values were obtained by LMD and EHLA processes, with mean values of 511 HV and 472 HV, respectively. The yield and tensile strengths of EHLA were superior to the conventional cast material, but inferior to those of the conventional material quenched and tempered at lower temperatures. The enhanced tensile results of EHLA process were found similar to those prepared through conventional method with quench and tempering at 600 °C.</div></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":"131 ","pages":"Pages 1372-1387"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal features and its effect on the properties of AISI 4140 fabricated by conventional and extreme high-speed laser material deposition\",\"authors\":\"Tianci Li , Dongyun Zhang , Lele Zhang , Thomas Schopphoven , Andres Gasser , Reinhart Poprawe\",\"doi\":\"10.1016/j.jmapro.2024.09.092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The extreme high-speed laser material deposition (EHLA) process has the potential to enable additive manufacturing for mass production by overcoming the limitations of slow scanning speed in conventional laser material deposition (LMD) processes. Thermal features are the key factors to link process and properties. A sound understanding of process-thermal-property relationships is essential for performance control and process optimization of a deposited component. In this study, we studied the thermal characteristics within a single layer and among layers for continuous processing using the numerical method, and reveal the mechanism of microstructure and hardness changes of AISI 4140 material formed by EHLA and LMD processes through the analysis of thermal properties and temperature history results. The grain size and hardness evolution for both processes during single-layer cladding and continuous forming processes were investigated. The results revealed that the grain refinement effect in continuous LMD processing is stronger than that in EHLA process (from 30.0 μm for single layer to 3.2 μm for multi layers vs. from 18.6 μm for single layer to 2.2 μm for multi layers). Similar hardness values were obtained by LMD and EHLA processes, with mean values of 511 HV and 472 HV, respectively. The yield and tensile strengths of EHLA were superior to the conventional cast material, but inferior to those of the conventional material quenched and tempered at lower temperatures. The enhanced tensile results of EHLA process were found similar to those prepared through conventional method with quench and tempering at 600 °C.</div></div>\",\"PeriodicalId\":16148,\"journal\":{\"name\":\"Journal of Manufacturing Processes\",\"volume\":\"131 \",\"pages\":\"Pages 1372-1387\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing Processes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1526612524010132\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Processes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1526612524010132","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Thermal features and its effect on the properties of AISI 4140 fabricated by conventional and extreme high-speed laser material deposition
The extreme high-speed laser material deposition (EHLA) process has the potential to enable additive manufacturing for mass production by overcoming the limitations of slow scanning speed in conventional laser material deposition (LMD) processes. Thermal features are the key factors to link process and properties. A sound understanding of process-thermal-property relationships is essential for performance control and process optimization of a deposited component. In this study, we studied the thermal characteristics within a single layer and among layers for continuous processing using the numerical method, and reveal the mechanism of microstructure and hardness changes of AISI 4140 material formed by EHLA and LMD processes through the analysis of thermal properties and temperature history results. The grain size and hardness evolution for both processes during single-layer cladding and continuous forming processes were investigated. The results revealed that the grain refinement effect in continuous LMD processing is stronger than that in EHLA process (from 30.0 μm for single layer to 3.2 μm for multi layers vs. from 18.6 μm for single layer to 2.2 μm for multi layers). Similar hardness values were obtained by LMD and EHLA processes, with mean values of 511 HV and 472 HV, respectively. The yield and tensile strengths of EHLA were superior to the conventional cast material, but inferior to those of the conventional material quenched and tempered at lower temperatures. The enhanced tensile results of EHLA process were found similar to those prepared through conventional method with quench and tempering at 600 °C.
期刊介绍:
The aim of the Journal of Manufacturing Processes (JMP) is to exchange current and future directions of manufacturing processes research, development and implementation, and to publish archival scholarly literature with a view to advancing state-of-the-art manufacturing processes and encouraging innovation for developing new and efficient processes. The journal will also publish from other research communities for rapid communication of innovative new concepts. Special-topic issues on emerging technologies and invited papers will also be published.