提高拖拉机的效率:评估和完善农用拖拉机牵引力测试程序

IF 2.4 3区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL Journal of Terramechanics Pub Date : 2024-10-09 DOI:10.1016/j.jterra.2024.101018
Leonardo Angelucci , François Pinet , Andrea Vertua , Michele Mattetti
{"title":"提高拖拉机的效率:评估和完善农用拖拉机牵引力测试程序","authors":"Leonardo Angelucci ,&nbsp;François Pinet ,&nbsp;Andrea Vertua ,&nbsp;Michele Mattetti","doi":"10.1016/j.jterra.2024.101018","DOIUrl":null,"url":null,"abstract":"<div><div>A reliable testing procedure is needed to benchmark different vehicle and tyre parameters. Several testing procedures within two main families – transient and steady states – were adopted to evaluate drawbar performance of tractors. The two procedural families were not hitherto compared using a full vehicle. This article aims to fill this gap. The transient and steady-state procedures were tested using a tractor rated of 230 kW sets in different configurations and equipped with sensors for evaluating the tractive parameters. In the transient procedure, the drawbar load was continuously increased to maintain a fixed ground speed. In the steady-state procedure, the drawbar load was gradually increased by reducing the ground speed. The maximum drawbar force generated by the tractor differed little between procedures, but a difference was observed in power delivery efficiency, mostly for the transmission’s influence during transient conditions leading to variable transmission efficiency. The results of the steady-state procedure for different vehicle configurations were more consistent with findings in the literature than those of the transient procedure. The steady-state procedure is better than the other but it requires more land and therefore it is less convenient when drawbar performances must be quickly evaluated for many vehicle and soil configurations.</div></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"117 ","pages":"Article 101018"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards more efficient tractors: Assessing and refining traction test procedures for agricultural tractors\",\"authors\":\"Leonardo Angelucci ,&nbsp;François Pinet ,&nbsp;Andrea Vertua ,&nbsp;Michele Mattetti\",\"doi\":\"10.1016/j.jterra.2024.101018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A reliable testing procedure is needed to benchmark different vehicle and tyre parameters. Several testing procedures within two main families – transient and steady states – were adopted to evaluate drawbar performance of tractors. The two procedural families were not hitherto compared using a full vehicle. This article aims to fill this gap. The transient and steady-state procedures were tested using a tractor rated of 230 kW sets in different configurations and equipped with sensors for evaluating the tractive parameters. In the transient procedure, the drawbar load was continuously increased to maintain a fixed ground speed. In the steady-state procedure, the drawbar load was gradually increased by reducing the ground speed. The maximum drawbar force generated by the tractor differed little between procedures, but a difference was observed in power delivery efficiency, mostly for the transmission’s influence during transient conditions leading to variable transmission efficiency. The results of the steady-state procedure for different vehicle configurations were more consistent with findings in the literature than those of the transient procedure. The steady-state procedure is better than the other but it requires more land and therefore it is less convenient when drawbar performances must be quickly evaluated for many vehicle and soil configurations.</div></div>\",\"PeriodicalId\":50023,\"journal\":{\"name\":\"Journal of Terramechanics\",\"volume\":\"117 \",\"pages\":\"Article 101018\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Terramechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022489824000600\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Terramechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022489824000600","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

需要一种可靠的测试程序来确定不同的车辆和轮胎参数。我们采用了瞬态和稳态两大类测试程序来评估拖拉机的牵引杆性能。迄今为止,尚未使用整车对这两个程序系列进行比较。本文旨在填补这一空白。瞬态和稳态程序使用额定功率为 230 千瓦的拖拉机进行了测试,拖拉机采用不同的配置,并配备了用于评估牵引参数的传感器。在瞬态程序中,牵引杆负载不断增加,以保持固定的地面速度。在稳态程序中,通过降低地面速度逐渐增加牵引力。拖拉机产生的最大牵引力在不同程序中差别不大,但在动力传输效率方面却出现了差异,这主要是由于变速器在瞬态条件下的影响导致了变速器效率的变化。与瞬态程序相比,不同车辆配置的稳态程序结果与文献研究结果更为一致。稳态程序比其他程序更好,但它需要更多的土地,因此在必须快速评估许多车辆和土壤配置的牵引杆性能时,它不太方便。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards more efficient tractors: Assessing and refining traction test procedures for agricultural tractors
A reliable testing procedure is needed to benchmark different vehicle and tyre parameters. Several testing procedures within two main families – transient and steady states – were adopted to evaluate drawbar performance of tractors. The two procedural families were not hitherto compared using a full vehicle. This article aims to fill this gap. The transient and steady-state procedures were tested using a tractor rated of 230 kW sets in different configurations and equipped with sensors for evaluating the tractive parameters. In the transient procedure, the drawbar load was continuously increased to maintain a fixed ground speed. In the steady-state procedure, the drawbar load was gradually increased by reducing the ground speed. The maximum drawbar force generated by the tractor differed little between procedures, but a difference was observed in power delivery efficiency, mostly for the transmission’s influence during transient conditions leading to variable transmission efficiency. The results of the steady-state procedure for different vehicle configurations were more consistent with findings in the literature than those of the transient procedure. The steady-state procedure is better than the other but it requires more land and therefore it is less convenient when drawbar performances must be quickly evaluated for many vehicle and soil configurations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Terramechanics
Journal of Terramechanics 工程技术-工程:环境
CiteScore
5.90
自引率
8.30%
发文量
33
审稿时长
15.3 weeks
期刊介绍: The Journal of Terramechanics is primarily devoted to scientific articles concerned with research, design, and equipment utilization in the field of terramechanics. The Journal of Terramechanics is the leading international journal serving the multidisciplinary global off-road vehicle and soil working machinery industries, and related user community, governmental agencies and universities. The Journal of Terramechanics provides a forum for those involved in research, development, design, innovation, testing, application and utilization of off-road vehicles and soil working machinery, and their sub-systems and components. The Journal presents a cross-section of technical papers, reviews, comments and discussions, and serves as a medium for recording recent progress in the field.
期刊最新文献
Acoustic winter terrain classification for offroad autonomous vehicles Investigation of steer preview methods to improve predictive control methods on off-road vehicles with realistic actuator delays Comparison of selected tire-terrain interaction models from the aspect of accuracy and computational intensity Simulation of cohesive-frictional artificial soil-to-blade interactions using an elasto-plastic discrete element model with stress-dependent cohesion Modelling and simulation fundamentals in design for ground vehicle mobility Part II: Western approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1