{"title":"关于氨/氧甲醚-2(OME2)混合物点火延迟时间的冲击管实验和数值研究","authors":"Lingfeng Dai, Jiacheng Liu, Chun Zou, Qianjin Lin, Tong Jiang, Chao Peng","doi":"10.1016/j.combustflame.2024.113783","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, ammonia (NH<sub>3</sub>) becomes an attractive alternative fuel to reduce CO<sub>2</sub> emissions. The combustion of NH<sub>3</sub> mixed with reactive fuels is a feasible solution to the issue of low reactivity. In the present study, the ignition delay times (IDTs) of NH<sub>3</sub>/OME<sub>2</sub> were measured in a shock tube at an equivalence ratio of 0.5, two pressures of 1.75 and 10 bar, and a temperature range of 1245–1797 K with OME<sub>2</sub> mole fractions of 0.05, 0.1, and 0.2. The OME<sub>2</sub><img>NH<sub>3</sub> model was proposed including the OME<sub>2</sub> model updated in this work, the NH<sub>3</sub> model optimized in our previous work, and some cross-reactions between nitrogen-containing species and C<sub>1</sub><img>C<sub>4</sub> species. The OME<sub>2</sub><img>NH<sub>3</sub> model well predicts the IDTs and species profiles of NH<sub>3</sub>/OME<sub>2</sub> and IDTs and laminar flame speeds of NH<sub>3</sub>/OME<sub>1</sub>, as well as the IDTs, laminar flame speeds, and species profiles of OME<sub>1</sub> and OME<sub>2</sub>. The cross-reactions considered in this work significantly improve the model prediction. The effects of cross-reactions on the high and low-temperature reactivity of NH<sub>3</sub>/OME<sub>2</sub> were analyzed in detail. The comparison between the OME<sub>2</sub><img>NH<sub>3</sub> model and the Li-Shrestha model illustrated that the OME<sub>2</sub> model updated in this work significantly improves the model prediction. This research provides archival experimental data for the NH<sub>3</sub>/OME<sub>2</sub> ignition and provides insights into the interactions between OME<sub>2</sub> and NH<sub>3</sub> by the detailed numerical simulations.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"270 ","pages":"Article 113783"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shock tube experiments and numerical study on ignition delay times of ammonia/oxymethylene ether-2 (OME2) mixtures\",\"authors\":\"Lingfeng Dai, Jiacheng Liu, Chun Zou, Qianjin Lin, Tong Jiang, Chao Peng\",\"doi\":\"10.1016/j.combustflame.2024.113783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recently, ammonia (NH<sub>3</sub>) becomes an attractive alternative fuel to reduce CO<sub>2</sub> emissions. The combustion of NH<sub>3</sub> mixed with reactive fuels is a feasible solution to the issue of low reactivity. In the present study, the ignition delay times (IDTs) of NH<sub>3</sub>/OME<sub>2</sub> were measured in a shock tube at an equivalence ratio of 0.5, two pressures of 1.75 and 10 bar, and a temperature range of 1245–1797 K with OME<sub>2</sub> mole fractions of 0.05, 0.1, and 0.2. The OME<sub>2</sub><img>NH<sub>3</sub> model was proposed including the OME<sub>2</sub> model updated in this work, the NH<sub>3</sub> model optimized in our previous work, and some cross-reactions between nitrogen-containing species and C<sub>1</sub><img>C<sub>4</sub> species. The OME<sub>2</sub><img>NH<sub>3</sub> model well predicts the IDTs and species profiles of NH<sub>3</sub>/OME<sub>2</sub> and IDTs and laminar flame speeds of NH<sub>3</sub>/OME<sub>1</sub>, as well as the IDTs, laminar flame speeds, and species profiles of OME<sub>1</sub> and OME<sub>2</sub>. The cross-reactions considered in this work significantly improve the model prediction. The effects of cross-reactions on the high and low-temperature reactivity of NH<sub>3</sub>/OME<sub>2</sub> were analyzed in detail. The comparison between the OME<sub>2</sub><img>NH<sub>3</sub> model and the Li-Shrestha model illustrated that the OME<sub>2</sub> model updated in this work significantly improves the model prediction. This research provides archival experimental data for the NH<sub>3</sub>/OME<sub>2</sub> ignition and provides insights into the interactions between OME<sub>2</sub> and NH<sub>3</sub> by the detailed numerical simulations.</div></div>\",\"PeriodicalId\":280,\"journal\":{\"name\":\"Combustion and Flame\",\"volume\":\"270 \",\"pages\":\"Article 113783\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion and Flame\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010218024004929\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218024004929","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Shock tube experiments and numerical study on ignition delay times of ammonia/oxymethylene ether-2 (OME2) mixtures
Recently, ammonia (NH3) becomes an attractive alternative fuel to reduce CO2 emissions. The combustion of NH3 mixed with reactive fuels is a feasible solution to the issue of low reactivity. In the present study, the ignition delay times (IDTs) of NH3/OME2 were measured in a shock tube at an equivalence ratio of 0.5, two pressures of 1.75 and 10 bar, and a temperature range of 1245–1797 K with OME2 mole fractions of 0.05, 0.1, and 0.2. The OME2NH3 model was proposed including the OME2 model updated in this work, the NH3 model optimized in our previous work, and some cross-reactions between nitrogen-containing species and C1C4 species. The OME2NH3 model well predicts the IDTs and species profiles of NH3/OME2 and IDTs and laminar flame speeds of NH3/OME1, as well as the IDTs, laminar flame speeds, and species profiles of OME1 and OME2. The cross-reactions considered in this work significantly improve the model prediction. The effects of cross-reactions on the high and low-temperature reactivity of NH3/OME2 were analyzed in detail. The comparison between the OME2NH3 model and the Li-Shrestha model illustrated that the OME2 model updated in this work significantly improves the model prediction. This research provides archival experimental data for the NH3/OME2 ignition and provides insights into the interactions between OME2 and NH3 by the detailed numerical simulations.
期刊介绍:
The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on:
Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including:
Conventional, alternative and surrogate fuels;
Pollutants;
Particulate and aerosol formation and abatement;
Heterogeneous processes.
Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including:
Premixed and non-premixed flames;
Ignition and extinction phenomena;
Flame propagation;
Flame structure;
Instabilities and swirl;
Flame spread;
Multi-phase reactants.
Advances in diagnostic and computational methods in combustion, including:
Measurement and simulation of scalar and vector properties;
Novel techniques;
State-of-the art applications.
Fundamental investigations of combustion technologies and systems, including:
Internal combustion engines;
Gas turbines;
Small- and large-scale stationary combustion and power generation;
Catalytic combustion;
Combustion synthesis;
Combustion under extreme conditions;
New concepts.