{"title":"带有外涡旋环的 V 形预混合漩涡火焰的强相互作用和弱相互作用","authors":"Yongzhi Ren, Qiuxiao Wang, Yuqian Peng, Liangliang Xu, Xi Xia, Fei Qi","doi":"10.1016/j.combustflame.2024.113760","DOIUrl":null,"url":null,"abstract":"<div><div>This paper reports two distinct vortex-flame interaction mechanisms existing in a self-excited V-shaped premixed flame. Time-resolved simultaneous measurements of particle image velocimetry (PIV) and OH* chemiluminescence are employed to capture the mean and coherent flow and flame structures. The qualitative study demonstrates the importance of the outer vortex rings (OVR) in governing the flame front dynamics of two representative lean and near-stoichiometric cases. The interaction of the flame with the OVRs is further analyzed quantitatively during one OVR's entire lifespan. Results suggest that the vortex-flame interaction in the lean case is a weak one as the response of the flame's HRR to OVR's growth is interrupted by the tip extinction. This can be understood as a response to the flow perturbation excited in the Helmholtz mode of the plenum. However, the near-stoichiometric case yields a strong interaction that the peak HRR is synchronized with the OVR's peak circulation, which could contribute to a stronger thermoacoustic coupling that leads to the stronger pressure oscillation and frequency drift away from the Helmholtz mode.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"270 ","pages":"Article 113760"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong and weak interactions of a V-shaped premixed swirling flame with outer vortex rings\",\"authors\":\"Yongzhi Ren, Qiuxiao Wang, Yuqian Peng, Liangliang Xu, Xi Xia, Fei Qi\",\"doi\":\"10.1016/j.combustflame.2024.113760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper reports two distinct vortex-flame interaction mechanisms existing in a self-excited V-shaped premixed flame. Time-resolved simultaneous measurements of particle image velocimetry (PIV) and OH* chemiluminescence are employed to capture the mean and coherent flow and flame structures. The qualitative study demonstrates the importance of the outer vortex rings (OVR) in governing the flame front dynamics of two representative lean and near-stoichiometric cases. The interaction of the flame with the OVRs is further analyzed quantitatively during one OVR's entire lifespan. Results suggest that the vortex-flame interaction in the lean case is a weak one as the response of the flame's HRR to OVR's growth is interrupted by the tip extinction. This can be understood as a response to the flow perturbation excited in the Helmholtz mode of the plenum. However, the near-stoichiometric case yields a strong interaction that the peak HRR is synchronized with the OVR's peak circulation, which could contribute to a stronger thermoacoustic coupling that leads to the stronger pressure oscillation and frequency drift away from the Helmholtz mode.</div></div>\",\"PeriodicalId\":280,\"journal\":{\"name\":\"Combustion and Flame\",\"volume\":\"270 \",\"pages\":\"Article 113760\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion and Flame\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010218024004693\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218024004693","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Strong and weak interactions of a V-shaped premixed swirling flame with outer vortex rings
This paper reports two distinct vortex-flame interaction mechanisms existing in a self-excited V-shaped premixed flame. Time-resolved simultaneous measurements of particle image velocimetry (PIV) and OH* chemiluminescence are employed to capture the mean and coherent flow and flame structures. The qualitative study demonstrates the importance of the outer vortex rings (OVR) in governing the flame front dynamics of two representative lean and near-stoichiometric cases. The interaction of the flame with the OVRs is further analyzed quantitatively during one OVR's entire lifespan. Results suggest that the vortex-flame interaction in the lean case is a weak one as the response of the flame's HRR to OVR's growth is interrupted by the tip extinction. This can be understood as a response to the flow perturbation excited in the Helmholtz mode of the plenum. However, the near-stoichiometric case yields a strong interaction that the peak HRR is synchronized with the OVR's peak circulation, which could contribute to a stronger thermoacoustic coupling that leads to the stronger pressure oscillation and frequency drift away from the Helmholtz mode.
期刊介绍:
The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on:
Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including:
Conventional, alternative and surrogate fuels;
Pollutants;
Particulate and aerosol formation and abatement;
Heterogeneous processes.
Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including:
Premixed and non-premixed flames;
Ignition and extinction phenomena;
Flame propagation;
Flame structure;
Instabilities and swirl;
Flame spread;
Multi-phase reactants.
Advances in diagnostic and computational methods in combustion, including:
Measurement and simulation of scalar and vector properties;
Novel techniques;
State-of-the art applications.
Fundamental investigations of combustion technologies and systems, including:
Internal combustion engines;
Gas turbines;
Small- and large-scale stationary combustion and power generation;
Catalytic combustion;
Combustion synthesis;
Combustion under extreme conditions;
New concepts.