{"title":"行星直齿轮传动装置的传动误差、啮合刚度和负载分担的模拟与验证","authors":"","doi":"10.1016/j.mechmachtheory.2024.105800","DOIUrl":null,"url":null,"abstract":"<div><div>Although the load sharing between planets of sequentially phased planetary gear transmissions has been studied in the past, the required solving techniques based on the Finite Element Method result in long time consuming and high computational cost. This limits the possibilities of undertaking extensive studies that take into consideration a high number of cases allowing optimal solutions to be sought or general conclusions drawn. In addition, the determination of the curves of transmission error, time-varying mesh stiffness, and load sharing among tooth pairs in simultaneous contact are also complicated. In this work an analytical model has been developed for the simulation of the time-varying mesh stiffness, quasi-static transmission error, and load sharing ratio between planets and tooth pairs of planetary spur gear transmissions. It is based on similar models for external and internal spur gears previously developed and has been validated by comparison with a hybrid model based on the Finite Element Method and theoretic-experimental correlation.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation and validation of the transmission error, meshing stiffness, and load sharing of planetary spur gear transmissions\",\"authors\":\"\",\"doi\":\"10.1016/j.mechmachtheory.2024.105800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Although the load sharing between planets of sequentially phased planetary gear transmissions has been studied in the past, the required solving techniques based on the Finite Element Method result in long time consuming and high computational cost. This limits the possibilities of undertaking extensive studies that take into consideration a high number of cases allowing optimal solutions to be sought or general conclusions drawn. In addition, the determination of the curves of transmission error, time-varying mesh stiffness, and load sharing among tooth pairs in simultaneous contact are also complicated. In this work an analytical model has been developed for the simulation of the time-varying mesh stiffness, quasi-static transmission error, and load sharing ratio between planets and tooth pairs of planetary spur gear transmissions. It is based on similar models for external and internal spur gears previously developed and has been validated by comparison with a hybrid model based on the Finite Element Method and theoretic-experimental correlation.</div></div>\",\"PeriodicalId\":49845,\"journal\":{\"name\":\"Mechanism and Machine Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanism and Machine Theory\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094114X24002271\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24002271","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Simulation and validation of the transmission error, meshing stiffness, and load sharing of planetary spur gear transmissions
Although the load sharing between planets of sequentially phased planetary gear transmissions has been studied in the past, the required solving techniques based on the Finite Element Method result in long time consuming and high computational cost. This limits the possibilities of undertaking extensive studies that take into consideration a high number of cases allowing optimal solutions to be sought or general conclusions drawn. In addition, the determination of the curves of transmission error, time-varying mesh stiffness, and load sharing among tooth pairs in simultaneous contact are also complicated. In this work an analytical model has been developed for the simulation of the time-varying mesh stiffness, quasi-static transmission error, and load sharing ratio between planets and tooth pairs of planetary spur gear transmissions. It is based on similar models for external and internal spur gears previously developed and has been validated by comparison with a hybrid model based on the Finite Element Method and theoretic-experimental correlation.
期刊介绍:
Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal.
The main topics are:
Design Theory and Methodology;
Haptics and Human-Machine-Interfaces;
Robotics, Mechatronics and Micro-Machines;
Mechanisms, Mechanical Transmissions and Machines;
Kinematics, Dynamics, and Control of Mechanical Systems;
Applications to Bioengineering and Molecular Chemistry