Yingxuan Dong , Xiaofa Yang , Dongdong Chang , Qun Li
{"title":"利用基于断裂力学的物理信息神经网络框架预测多缺陷材料的疲劳寿命","authors":"Yingxuan Dong , Xiaofa Yang , Dongdong Chang , Qun Li","doi":"10.1016/j.ijfatigue.2024.108626","DOIUrl":null,"url":null,"abstract":"<div><div>To address the limitations of traditional methods (such as the S-N curves and Paris’s law) in evaluating the fatigue life of multi-defect materials, this study developed a fracture mechanics-based physics-informed neural network (PINN) to predict the lifetime of multi-defect materials using cyclic loading (Δσ) and the equivalent damage area (<em>A<sub>D</sub></em>). Influences of multiple defects were unified characterized through the equivalent damage area, which was calculated based on the <em>M</em>−integral fatigue model. This model reflects the energy evolution of multi-defect fatigue damage. By embedding the prior knowledge of fracture mechanics derived from the <em>M</em>−integral fatigue model into the loss function of PINN, crucial physical information was captured during the training progress, enhancing the interpretability of the neural network. By integrating the advantage of the <em>M</em>−integral fatigue model in characterizing the fatigue performance of multi-defect materials and the nonlinear fitting ability of neural networks, the proposed approach effectively improves the generalization ability and predictive accuracy of limited fatigue data. The presented PINN models accurately forecast the fatigue life of multi-defect materials, with a squared correlation coefficient (<em>R</em><sup>2</sup>) exceeding 0.9. The presented methodological framework addresses the existing gap in methods for evaluating the fatigue performance of multi-defect materials and reliance on fatigue testing.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"190 ","pages":"Article 108626"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting fatigue life of multi-defect materials using the fracture mechanics-based physics-informed neural network framework\",\"authors\":\"Yingxuan Dong , Xiaofa Yang , Dongdong Chang , Qun Li\",\"doi\":\"10.1016/j.ijfatigue.2024.108626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To address the limitations of traditional methods (such as the S-N curves and Paris’s law) in evaluating the fatigue life of multi-defect materials, this study developed a fracture mechanics-based physics-informed neural network (PINN) to predict the lifetime of multi-defect materials using cyclic loading (Δσ) and the equivalent damage area (<em>A<sub>D</sub></em>). Influences of multiple defects were unified characterized through the equivalent damage area, which was calculated based on the <em>M</em>−integral fatigue model. This model reflects the energy evolution of multi-defect fatigue damage. By embedding the prior knowledge of fracture mechanics derived from the <em>M</em>−integral fatigue model into the loss function of PINN, crucial physical information was captured during the training progress, enhancing the interpretability of the neural network. By integrating the advantage of the <em>M</em>−integral fatigue model in characterizing the fatigue performance of multi-defect materials and the nonlinear fitting ability of neural networks, the proposed approach effectively improves the generalization ability and predictive accuracy of limited fatigue data. The presented PINN models accurately forecast the fatigue life of multi-defect materials, with a squared correlation coefficient (<em>R</em><sup>2</sup>) exceeding 0.9. The presented methodological framework addresses the existing gap in methods for evaluating the fatigue performance of multi-defect materials and reliance on fatigue testing.</div></div>\",\"PeriodicalId\":14112,\"journal\":{\"name\":\"International Journal of Fatigue\",\"volume\":\"190 \",\"pages\":\"Article 108626\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fatigue\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142112324004857\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112324004857","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Predicting fatigue life of multi-defect materials using the fracture mechanics-based physics-informed neural network framework
To address the limitations of traditional methods (such as the S-N curves and Paris’s law) in evaluating the fatigue life of multi-defect materials, this study developed a fracture mechanics-based physics-informed neural network (PINN) to predict the lifetime of multi-defect materials using cyclic loading (Δσ) and the equivalent damage area (AD). Influences of multiple defects were unified characterized through the equivalent damage area, which was calculated based on the M−integral fatigue model. This model reflects the energy evolution of multi-defect fatigue damage. By embedding the prior knowledge of fracture mechanics derived from the M−integral fatigue model into the loss function of PINN, crucial physical information was captured during the training progress, enhancing the interpretability of the neural network. By integrating the advantage of the M−integral fatigue model in characterizing the fatigue performance of multi-defect materials and the nonlinear fitting ability of neural networks, the proposed approach effectively improves the generalization ability and predictive accuracy of limited fatigue data. The presented PINN models accurately forecast the fatigue life of multi-defect materials, with a squared correlation coefficient (R2) exceeding 0.9. The presented methodological framework addresses the existing gap in methods for evaluating the fatigue performance of multi-defect materials and reliance on fatigue testing.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.