Ersan Kirar , Gokhan Demircan , Murat Kisa , Mustafa Ozen , Cenap Guven
{"title":"玻璃/环氧复合材料的准静态冲剪行为:人工海水环境中的实验和数值研究","authors":"Ersan Kirar , Gokhan Demircan , Murat Kisa , Mustafa Ozen , Cenap Guven","doi":"10.1016/j.apor.2024.104262","DOIUrl":null,"url":null,"abstract":"<div><div>Enhancing the understanding of how fiber-reinforced polymer composites respond to high-speed impacts is crucial, particularly in comparison to Quasi-Static Punch Shear Test (QS-PST). While researchers have extensively investigated QS-PST in FRP composites through experimental and numerical approaches, there's a notable gap in studies addressing the aging effects through both experimental and numerical methods. In this study, the QS-PST was conducted on S2 glass fiber reinforced epoxy composite materials aged in an artificial seawater environment. Composite plates were fabricated using Vacuum-assisted resin transfer molding (VARTM). Test samples were subjected to aging for durations of 4, 8, and 12 months. Experimental QS-PST were performed on the samples, followed by Finite Element Analysis (FEA) using LS-DYNA and the MAT 162 material model. The mechanical properties of the composite material were incorporated into the FEA and aging effects were simulated with a maximum error of 8.08% by using the proposed material model. The results indicated that the aging process led to a reduction in the punch shear strength of the composite by up to 26.84%. These findings provide valuable insights into the degradation mechanisms of composite materials in marine environments, aiding in the development of strategies for enhanced durability and performance in such conditions.</div></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":"153 ","pages":"Article 104262"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi-static punch shear behavior of glass/epoxy composite: Experimental and numerical study in artificial seawater environment\",\"authors\":\"Ersan Kirar , Gokhan Demircan , Murat Kisa , Mustafa Ozen , Cenap Guven\",\"doi\":\"10.1016/j.apor.2024.104262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Enhancing the understanding of how fiber-reinforced polymer composites respond to high-speed impacts is crucial, particularly in comparison to Quasi-Static Punch Shear Test (QS-PST). While researchers have extensively investigated QS-PST in FRP composites through experimental and numerical approaches, there's a notable gap in studies addressing the aging effects through both experimental and numerical methods. In this study, the QS-PST was conducted on S2 glass fiber reinforced epoxy composite materials aged in an artificial seawater environment. Composite plates were fabricated using Vacuum-assisted resin transfer molding (VARTM). Test samples were subjected to aging for durations of 4, 8, and 12 months. Experimental QS-PST were performed on the samples, followed by Finite Element Analysis (FEA) using LS-DYNA and the MAT 162 material model. The mechanical properties of the composite material were incorporated into the FEA and aging effects were simulated with a maximum error of 8.08% by using the proposed material model. The results indicated that the aging process led to a reduction in the punch shear strength of the composite by up to 26.84%. These findings provide valuable insights into the degradation mechanisms of composite materials in marine environments, aiding in the development of strategies for enhanced durability and performance in such conditions.</div></div>\",\"PeriodicalId\":8261,\"journal\":{\"name\":\"Applied Ocean Research\",\"volume\":\"153 \",\"pages\":\"Article 104262\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Ocean Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141118724003833\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, OCEAN\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ocean Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141118724003833","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
Quasi-static punch shear behavior of glass/epoxy composite: Experimental and numerical study in artificial seawater environment
Enhancing the understanding of how fiber-reinforced polymer composites respond to high-speed impacts is crucial, particularly in comparison to Quasi-Static Punch Shear Test (QS-PST). While researchers have extensively investigated QS-PST in FRP composites through experimental and numerical approaches, there's a notable gap in studies addressing the aging effects through both experimental and numerical methods. In this study, the QS-PST was conducted on S2 glass fiber reinforced epoxy composite materials aged in an artificial seawater environment. Composite plates were fabricated using Vacuum-assisted resin transfer molding (VARTM). Test samples were subjected to aging for durations of 4, 8, and 12 months. Experimental QS-PST were performed on the samples, followed by Finite Element Analysis (FEA) using LS-DYNA and the MAT 162 material model. The mechanical properties of the composite material were incorporated into the FEA and aging effects were simulated with a maximum error of 8.08% by using the proposed material model. The results indicated that the aging process led to a reduction in the punch shear strength of the composite by up to 26.84%. These findings provide valuable insights into the degradation mechanisms of composite materials in marine environments, aiding in the development of strategies for enhanced durability and performance in such conditions.
期刊介绍:
The aim of Applied Ocean Research is to encourage the submission of papers that advance the state of knowledge in a range of topics relevant to ocean engineering.