基于分布式共识的非负不可还原矩阵前导特征值估算

IF 2 4区 计算机科学 Q2 COMPUTER SCIENCE, THEORY & METHODS Parallel Computing Pub Date : 2024-10-05 DOI:10.1016/j.parco.2024.103113
Rahim Alizadeh , Shahriar Bijani , Fatemeh Shakeri
{"title":"基于分布式共识的非负不可还原矩阵前导特征值估算","authors":"Rahim Alizadeh ,&nbsp;Shahriar Bijani ,&nbsp;Fatemeh Shakeri","doi":"10.1016/j.parco.2024.103113","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an algorithm to solve the problem of estimating the largest eigenvalue and its corresponding eigenvector for irreducible matrices in a distributed manner. The proposed algorithm utilizes a network of computational nodes that interact with each other, forming a strongly connected digraph where each node handles one row of the matrix, without the need for centralized storage or knowledge of the entire matrix. Each node possesses a solution space, and the intersection of all these solution spaces contains the leading eigenvector of the matrix. Initially, each node selects a random vector from its solution space, and then, while interacting with its neighbors, updates the vector at each step by solving a quadratically constrained linear program (QCLP). The updates are done so that the nodes reach a consensus on the leading eigenvector of the matrix. The numerical outcomes demonstrate the effectiveness of our proposed method.</div></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"122 ","pages":"Article 103113"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed consensus-based estimation of the leading eigenvalue of a non-negative irreducible matrix\",\"authors\":\"Rahim Alizadeh ,&nbsp;Shahriar Bijani ,&nbsp;Fatemeh Shakeri\",\"doi\":\"10.1016/j.parco.2024.103113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents an algorithm to solve the problem of estimating the largest eigenvalue and its corresponding eigenvector for irreducible matrices in a distributed manner. The proposed algorithm utilizes a network of computational nodes that interact with each other, forming a strongly connected digraph where each node handles one row of the matrix, without the need for centralized storage or knowledge of the entire matrix. Each node possesses a solution space, and the intersection of all these solution spaces contains the leading eigenvector of the matrix. Initially, each node selects a random vector from its solution space, and then, while interacting with its neighbors, updates the vector at each step by solving a quadratically constrained linear program (QCLP). The updates are done so that the nodes reach a consensus on the leading eigenvector of the matrix. The numerical outcomes demonstrate the effectiveness of our proposed method.</div></div>\",\"PeriodicalId\":54642,\"journal\":{\"name\":\"Parallel Computing\",\"volume\":\"122 \",\"pages\":\"Article 103113\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167819124000516\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167819124000516","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种算法,用于解决以分布式方式估算不可还原矩阵的最大特征值及其相应特征向量的问题。所提出的算法利用一个计算节点网络,这些节点相互影响,形成一个强连接的数字图,其中每个节点处理矩阵的一行,而无需集中存储或了解整个矩阵。每个节点都有一个解空间,所有这些解空间的交集包含矩阵的前导特征向量。最初,每个节点从自己的解空间中随机选择一个向量,然后在与相邻节点交互的过程中,通过求解二次约束线性规划(QCLP)来更新每一步的向量。更新的目的是使节点就矩阵的前特征向量达成共识。数值结果证明了我们所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distributed consensus-based estimation of the leading eigenvalue of a non-negative irreducible matrix
This paper presents an algorithm to solve the problem of estimating the largest eigenvalue and its corresponding eigenvector for irreducible matrices in a distributed manner. The proposed algorithm utilizes a network of computational nodes that interact with each other, forming a strongly connected digraph where each node handles one row of the matrix, without the need for centralized storage or knowledge of the entire matrix. Each node possesses a solution space, and the intersection of all these solution spaces contains the leading eigenvector of the matrix. Initially, each node selects a random vector from its solution space, and then, while interacting with its neighbors, updates the vector at each step by solving a quadratically constrained linear program (QCLP). The updates are done so that the nodes reach a consensus on the leading eigenvector of the matrix. The numerical outcomes demonstrate the effectiveness of our proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Parallel Computing
Parallel Computing 工程技术-计算机:理论方法
CiteScore
3.50
自引率
7.10%
发文量
49
审稿时长
4.5 months
期刊介绍: Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems. Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results. Particular technical areas of interest include, but are not limited to: -System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing). -Enabling software including debuggers, performance tools, and system and numeric libraries. -General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems -Software engineering and productivity as it relates to parallel computing -Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism -Performance measurement results on state-of-the-art systems -Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures. -Parallel I/O systems both hardware and software -Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications
期刊最新文献
Towards resilient and energy efficient scalable Krylov solvers Seesaw: A 4096-bit vector processor for accelerating Kyber based on RISC-V ISA extensions Editorial Board FastPTM: Fast weights loading of pre-trained models for parallel inference service provisioning Distributed consensus-based estimation of the leading eigenvalue of a non-negative irreducible matrix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1