Rahim Alizadeh , Shahriar Bijani , Fatemeh Shakeri
{"title":"基于分布式共识的非负不可还原矩阵前导特征值估算","authors":"Rahim Alizadeh , Shahriar Bijani , Fatemeh Shakeri","doi":"10.1016/j.parco.2024.103113","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an algorithm to solve the problem of estimating the largest eigenvalue and its corresponding eigenvector for irreducible matrices in a distributed manner. The proposed algorithm utilizes a network of computational nodes that interact with each other, forming a strongly connected digraph where each node handles one row of the matrix, without the need for centralized storage or knowledge of the entire matrix. Each node possesses a solution space, and the intersection of all these solution spaces contains the leading eigenvector of the matrix. Initially, each node selects a random vector from its solution space, and then, while interacting with its neighbors, updates the vector at each step by solving a quadratically constrained linear program (QCLP). The updates are done so that the nodes reach a consensus on the leading eigenvector of the matrix. The numerical outcomes demonstrate the effectiveness of our proposed method.</div></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"122 ","pages":"Article 103113"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed consensus-based estimation of the leading eigenvalue of a non-negative irreducible matrix\",\"authors\":\"Rahim Alizadeh , Shahriar Bijani , Fatemeh Shakeri\",\"doi\":\"10.1016/j.parco.2024.103113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents an algorithm to solve the problem of estimating the largest eigenvalue and its corresponding eigenvector for irreducible matrices in a distributed manner. The proposed algorithm utilizes a network of computational nodes that interact with each other, forming a strongly connected digraph where each node handles one row of the matrix, without the need for centralized storage or knowledge of the entire matrix. Each node possesses a solution space, and the intersection of all these solution spaces contains the leading eigenvector of the matrix. Initially, each node selects a random vector from its solution space, and then, while interacting with its neighbors, updates the vector at each step by solving a quadratically constrained linear program (QCLP). The updates are done so that the nodes reach a consensus on the leading eigenvector of the matrix. The numerical outcomes demonstrate the effectiveness of our proposed method.</div></div>\",\"PeriodicalId\":54642,\"journal\":{\"name\":\"Parallel Computing\",\"volume\":\"122 \",\"pages\":\"Article 103113\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167819124000516\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167819124000516","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Distributed consensus-based estimation of the leading eigenvalue of a non-negative irreducible matrix
This paper presents an algorithm to solve the problem of estimating the largest eigenvalue and its corresponding eigenvector for irreducible matrices in a distributed manner. The proposed algorithm utilizes a network of computational nodes that interact with each other, forming a strongly connected digraph where each node handles one row of the matrix, without the need for centralized storage or knowledge of the entire matrix. Each node possesses a solution space, and the intersection of all these solution spaces contains the leading eigenvector of the matrix. Initially, each node selects a random vector from its solution space, and then, while interacting with its neighbors, updates the vector at each step by solving a quadratically constrained linear program (QCLP). The updates are done so that the nodes reach a consensus on the leading eigenvector of the matrix. The numerical outcomes demonstrate the effectiveness of our proposed method.
期刊介绍:
Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems.
Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results.
Particular technical areas of interest include, but are not limited to:
-System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing).
-Enabling software including debuggers, performance tools, and system and numeric libraries.
-General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems
-Software engineering and productivity as it relates to parallel computing
-Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism
-Performance measurement results on state-of-the-art systems
-Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures.
-Parallel I/O systems both hardware and software
-Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications