{"title":"有界重复分支程序和有界宽度 CNF 的分裂能力","authors":"Igor Razgon","doi":"10.1016/j.dam.2024.09.028","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we study syntactic branching programs of bounded repetition representing CNFs of bounded treewidth. For this purpose we introduce two new structural graph parameters <span><math><mi>d</mi></math></span>-pathwidth and clique preserving <span><math><mi>d</mi></math></span>-pathwidth denoted by <span><math><mrow><mi>p</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>c</mi><mi>p</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> where <span><math><mi>G</mi></math></span> is a graph. We show that <span><math><mrow><mi>c</mi><mi>p</mi><msub><mrow><mi>w</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>O</mi><mrow><mo>(</mo><mi>t</mi><mi>w</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> where <span><math><mrow><mi>t</mi><mi>w</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> are, respectively the treewidth and maximal degree of <span><math><mi>G</mi></math></span>. Using this upper bound, we demonstrate that each CNF <span><math><mi>ψ</mi></math></span> can be represented as a conjunction of two OBDDs (quite a restricted class of read-twice branching programs) of size <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mrow><mo>(</mo><mi>Δ</mi><mrow><mo>(</mo><mi>ψ</mi><mo>)</mo></mrow><mi>⋅</mi><mi>t</mi><mi>w</mi><msup><mrow><mrow><mo>(</mo><mi>ψ</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></msup></math></span> where <span><math><mrow><mi>t</mi><mi>w</mi><mrow><mo>(</mo><mi>ψ</mi><mo>)</mo></mrow></mrow></math></span> is the treewidth of the primal graph of <span><math><mi>ψ</mi></math></span> and each variable occurs in <span><math><mi>ψ</mi></math></span> at most <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>ψ</mi><mo>)</mo></mrow></mrow></math></span> times.</div><div>Next, we use <span><math><mi>d</mi></math></span>-pathwidth to obtain lower bounds for monotone branching programs. In particular, we consider the monotone version of syntactic nondeterministic read <span><math><mi>d</mi></math></span> times branching programs (just forbidding negative literals as edge labels) and introduce a further restriction that each computational path can be partitioned into at most <span><math><mi>d</mi></math></span> read-once subpaths. We call the resulting model separable monotone read <span><math><mi>d</mi></math></span> times branching programs and abbreviate them <span><math><mi>d</mi></math></span>-SMNBPs. For each graph <span><math><mi>G</mi></math></span> without isolated vertices, we introduce a CNF <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> whose clauses are <span><math><mrow><mo>(</mo><mi>u</mi><mo>∨</mo><mi>e</mi><mo>∨</mo><mi>v</mi><mo>)</mo></mrow></math></span> for each edge <span><math><mrow><mi>e</mi><mo>=</mo><mrow><mo>{</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>}</mo></mrow></mrow></math></span> of <span><math><mi>G</mi></math></span>. We prove that a <span><math><mi>d</mi></math></span>-SMNBP representing <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is of size at least <span><math><mrow><mi>Ω</mi><mrow><mo>(</mo><msup><mrow><mi>c</mi></mrow><mrow><mi>p</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></msup><mo>)</mo></mrow></mrow></math></span> where <span><math><mrow><mi>c</mi><mo>=</mo><msup><mrow><mrow><mo>(</mo><mn>8</mn><mo>/</mo><mn>7</mn><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>/</mo><mn>12</mn></mrow></msup></mrow></math></span>. We use this ’generic’ lower bound to obtain an exponential lower bound for a ’concrete’ class of CNFs <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>. In particular, we demonstrate that for each <span><math><mrow><mn>0</mn><mo><</mo><mi>a</mi><mo><</mo><mn>1</mn></mrow></math></span>, the size of <span><math><msup><mrow><mi>n</mi></mrow><mrow><mi>a</mi></mrow></msup></math></span>-SMNBP representing <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> is at least <span><math><msup><mrow><mi>c</mi></mrow><mrow><msup><mrow><mi>n</mi></mrow><mrow><mi>b</mi></mrow></msup></mrow></msup></math></span> where <span><math><mi>b</mi></math></span> is an arbitrary constant such that <span><math><mrow><mi>a</mi><mo>+</mo><mi>b</mi><mo><</mo><mn>1</mn></mrow></math></span>. This lower bound is tight in the sense <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> can be represented by a poly-sized <span><math><mi>n</mi></math></span>-SMNBP.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"360 ","pages":"Pages 366-381"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The splitting power of branching programs of bounded repetition and CNFs of bounded width\",\"authors\":\"Igor Razgon\",\"doi\":\"10.1016/j.dam.2024.09.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we study syntactic branching programs of bounded repetition representing CNFs of bounded treewidth. For this purpose we introduce two new structural graph parameters <span><math><mi>d</mi></math></span>-pathwidth and clique preserving <span><math><mi>d</mi></math></span>-pathwidth denoted by <span><math><mrow><mi>p</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>c</mi><mi>p</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> where <span><math><mi>G</mi></math></span> is a graph. We show that <span><math><mrow><mi>c</mi><mi>p</mi><msub><mrow><mi>w</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>O</mi><mrow><mo>(</mo><mi>t</mi><mi>w</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> where <span><math><mrow><mi>t</mi><mi>w</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> are, respectively the treewidth and maximal degree of <span><math><mi>G</mi></math></span>. Using this upper bound, we demonstrate that each CNF <span><math><mi>ψ</mi></math></span> can be represented as a conjunction of two OBDDs (quite a restricted class of read-twice branching programs) of size <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mrow><mo>(</mo><mi>Δ</mi><mrow><mo>(</mo><mi>ψ</mi><mo>)</mo></mrow><mi>⋅</mi><mi>t</mi><mi>w</mi><msup><mrow><mrow><mo>(</mo><mi>ψ</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></msup></math></span> where <span><math><mrow><mi>t</mi><mi>w</mi><mrow><mo>(</mo><mi>ψ</mi><mo>)</mo></mrow></mrow></math></span> is the treewidth of the primal graph of <span><math><mi>ψ</mi></math></span> and each variable occurs in <span><math><mi>ψ</mi></math></span> at most <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>ψ</mi><mo>)</mo></mrow></mrow></math></span> times.</div><div>Next, we use <span><math><mi>d</mi></math></span>-pathwidth to obtain lower bounds for monotone branching programs. In particular, we consider the monotone version of syntactic nondeterministic read <span><math><mi>d</mi></math></span> times branching programs (just forbidding negative literals as edge labels) and introduce a further restriction that each computational path can be partitioned into at most <span><math><mi>d</mi></math></span> read-once subpaths. We call the resulting model separable monotone read <span><math><mi>d</mi></math></span> times branching programs and abbreviate them <span><math><mi>d</mi></math></span>-SMNBPs. For each graph <span><math><mi>G</mi></math></span> without isolated vertices, we introduce a CNF <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> whose clauses are <span><math><mrow><mo>(</mo><mi>u</mi><mo>∨</mo><mi>e</mi><mo>∨</mo><mi>v</mi><mo>)</mo></mrow></math></span> for each edge <span><math><mrow><mi>e</mi><mo>=</mo><mrow><mo>{</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>}</mo></mrow></mrow></math></span> of <span><math><mi>G</mi></math></span>. We prove that a <span><math><mi>d</mi></math></span>-SMNBP representing <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is of size at least <span><math><mrow><mi>Ω</mi><mrow><mo>(</mo><msup><mrow><mi>c</mi></mrow><mrow><mi>p</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></msup><mo>)</mo></mrow></mrow></math></span> where <span><math><mrow><mi>c</mi><mo>=</mo><msup><mrow><mrow><mo>(</mo><mn>8</mn><mo>/</mo><mn>7</mn><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>/</mo><mn>12</mn></mrow></msup></mrow></math></span>. We use this ’generic’ lower bound to obtain an exponential lower bound for a ’concrete’ class of CNFs <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>. In particular, we demonstrate that for each <span><math><mrow><mn>0</mn><mo><</mo><mi>a</mi><mo><</mo><mn>1</mn></mrow></math></span>, the size of <span><math><msup><mrow><mi>n</mi></mrow><mrow><mi>a</mi></mrow></msup></math></span>-SMNBP representing <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> is at least <span><math><msup><mrow><mi>c</mi></mrow><mrow><msup><mrow><mi>n</mi></mrow><mrow><mi>b</mi></mrow></msup></mrow></msup></math></span> where <span><math><mi>b</mi></math></span> is an arbitrary constant such that <span><math><mrow><mi>a</mi><mo>+</mo><mi>b</mi><mo><</mo><mn>1</mn></mrow></math></span>. This lower bound is tight in the sense <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> can be represented by a poly-sized <span><math><mi>n</mi></math></span>-SMNBP.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"360 \",\"pages\":\"Pages 366-381\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X24004189\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24004189","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们研究了代表有界树宽 CNF 的有界重复句法分支程序。为此,我们引入了两个新的结构图参数 d-pathwidth 和保簇 d-pathwidth,分别用 pwd(G) 和 cpwd(G) 表示,其中 G 是一个图。我们证明 cpw2(G)≤O(tw(G)Δ(G)) 其中 tw(G) 和 Δ(G) 分别是 G 的树宽和最大度数。利用这一上限,我们证明了每个 CNF ψ 都可以表示为两个大小为 2O(Δ(ψ)⋅tw(ψ)2) 的 OBDDs(相当有限的一类读两次分支程序)的连接,其中 tw(ψ) 是 ψ 的基元图的树宽,每个变量在 ψ 中出现的次数最多为 Δ(ψ)。接下来,我们使用 d 路径宽度来获得单调分支程序的下界。具体来说,我们考虑了语法非确定性读取 d 次分支程序的单调版本(只是禁止负字面作为边标签),并引入了进一步的限制条件,即每条计算路径最多可以划分为 d 个只读一次的子路径。我们将由此产生的模型称为可分离单调读取 d 次分支程序,并简称为 d-SMNBPs。对于每个没有孤立顶点的图 G,我们引入一个 CNF ψ(G),对于 G 的每条边 e={u,v},其分句为 (u∨e∨v)。我们将证明表示 ψ(G)的 d-SMNBP 大小至少为 Ω(cpwd(G)) ,其中 c=(8/7)1/12 。我们利用这个 "通用 "下界,为一类 "具体 "的 CNF ψ(Kn)求得指数下界。我们特别证明,对于每个 0<a<1,表示 ψ(Kn)的 na-SMNBP 的大小至少为 cnb,其中 b 是一个任意常数,使得 a+b<1。从 ψ(Kn)可以用一个多元大小的 n-SMNBP 表示的意义上讲,这个下界是严密的。
The splitting power of branching programs of bounded repetition and CNFs of bounded width
In this paper we study syntactic branching programs of bounded repetition representing CNFs of bounded treewidth. For this purpose we introduce two new structural graph parameters -pathwidth and clique preserving -pathwidth denoted by and where is a graph. We show that where and are, respectively the treewidth and maximal degree of . Using this upper bound, we demonstrate that each CNF can be represented as a conjunction of two OBDDs (quite a restricted class of read-twice branching programs) of size where is the treewidth of the primal graph of and each variable occurs in at most times.
Next, we use -pathwidth to obtain lower bounds for monotone branching programs. In particular, we consider the monotone version of syntactic nondeterministic read times branching programs (just forbidding negative literals as edge labels) and introduce a further restriction that each computational path can be partitioned into at most read-once subpaths. We call the resulting model separable monotone read times branching programs and abbreviate them -SMNBPs. For each graph without isolated vertices, we introduce a CNF whose clauses are for each edge of . We prove that a -SMNBP representing is of size at least where . We use this ’generic’ lower bound to obtain an exponential lower bound for a ’concrete’ class of CNFs . In particular, we demonstrate that for each , the size of -SMNBP representing is at least where is an arbitrary constant such that . This lower bound is tight in the sense can be represented by a poly-sized -SMNBP.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.