Jinzhao Yang , Haijun Peng , Shunan Wu , Jie Zhang , Zhigang Wu , Jianing Wu
{"title":"基于微分代数方程的模型预测控制,用于航天器安装的连续机械手的轨迹跟踪","authors":"Jinzhao Yang , Haijun Peng , Shunan Wu , Jie Zhang , Zhigang Wu , Jianing Wu","doi":"10.1016/j.ast.2024.109615","DOIUrl":null,"url":null,"abstract":"<div><div>Spacecraft-mounted continuum manipulators (SMCMs) exhibit great potential for performing dexterous operations in unstructured environments due to their inherent compliance and dexterity. However, the dynamic model of the rigid-flexible coupling SMCM is highly nonlinear and typically formulated as a set of implicit differential-algebraic equations (DAEs), posing significant challenges for precise trajectory tracking control. This paper proposes a novel model predictive control (MPC) framework specifically designed for generic DAEs to achieve precise trajectory tracking of the SMCM under uncertain disturbances and input limitations. The DAE model of the SMCM is discretized into a set of nonlinear algebraic equations. By performing implicit differentiation of these equations with respect to the system state, the state transition matrix (STM) for the DAE model is derived. The optimal control action for the SMCM can be further determined based on the derived STM. Additionally, nonlinear complementary functions are introduced to address the issue of input limitations, allowing the problem of determining the optimal control sequence to be equivalently transformed into a set of nonlinear algebraic equations for solving. Numerical simulations demonstrate that the proposed approach can achieve precise trajectory tracking of the SMCM while strictly adhering to input limitations.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"155 ","pages":"Article 109615"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential-algebraic equation-based model predictive control for trajectory tracking of spacecraft-mounted continuum manipulators\",\"authors\":\"Jinzhao Yang , Haijun Peng , Shunan Wu , Jie Zhang , Zhigang Wu , Jianing Wu\",\"doi\":\"10.1016/j.ast.2024.109615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Spacecraft-mounted continuum manipulators (SMCMs) exhibit great potential for performing dexterous operations in unstructured environments due to their inherent compliance and dexterity. However, the dynamic model of the rigid-flexible coupling SMCM is highly nonlinear and typically formulated as a set of implicit differential-algebraic equations (DAEs), posing significant challenges for precise trajectory tracking control. This paper proposes a novel model predictive control (MPC) framework specifically designed for generic DAEs to achieve precise trajectory tracking of the SMCM under uncertain disturbances and input limitations. The DAE model of the SMCM is discretized into a set of nonlinear algebraic equations. By performing implicit differentiation of these equations with respect to the system state, the state transition matrix (STM) for the DAE model is derived. The optimal control action for the SMCM can be further determined based on the derived STM. Additionally, nonlinear complementary functions are introduced to address the issue of input limitations, allowing the problem of determining the optimal control sequence to be equivalently transformed into a set of nonlinear algebraic equations for solving. Numerical simulations demonstrate that the proposed approach can achieve precise trajectory tracking of the SMCM while strictly adhering to input limitations.</div></div>\",\"PeriodicalId\":50955,\"journal\":{\"name\":\"Aerospace Science and Technology\",\"volume\":\"155 \",\"pages\":\"Article 109615\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1270963824007442\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824007442","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Differential-algebraic equation-based model predictive control for trajectory tracking of spacecraft-mounted continuum manipulators
Spacecraft-mounted continuum manipulators (SMCMs) exhibit great potential for performing dexterous operations in unstructured environments due to their inherent compliance and dexterity. However, the dynamic model of the rigid-flexible coupling SMCM is highly nonlinear and typically formulated as a set of implicit differential-algebraic equations (DAEs), posing significant challenges for precise trajectory tracking control. This paper proposes a novel model predictive control (MPC) framework specifically designed for generic DAEs to achieve precise trajectory tracking of the SMCM under uncertain disturbances and input limitations. The DAE model of the SMCM is discretized into a set of nonlinear algebraic equations. By performing implicit differentiation of these equations with respect to the system state, the state transition matrix (STM) for the DAE model is derived. The optimal control action for the SMCM can be further determined based on the derived STM. Additionally, nonlinear complementary functions are introduced to address the issue of input limitations, allowing the problem of determining the optimal control sequence to be equivalently transformed into a set of nonlinear algebraic equations for solving. Numerical simulations demonstrate that the proposed approach can achieve precise trajectory tracking of the SMCM while strictly adhering to input limitations.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.