{"title":"利用高次谐波控制降低叶片涡流相互作用噪音的数值研究","authors":"Tao Yang, Yan Ding, Xi Chen, Qijun Zhao","doi":"10.1016/j.ast.2024.109609","DOIUrl":null,"url":null,"abstract":"<div><div>Accurately predicting the formation, evolution, and breakdown of helicopter blade tip vortex is crucial for simulating the Blade-Vortex Interaction (BVI) phenomenon. Firstly, the high-order Perturbed polynomial reconstructed Targeted Essentially Non-Oscillatory (TENO-P) scheme proposed by our research group is employed to improve the resolution of the helicopter rotor flowfield solver. The TENO-P scheme, building on the fifth-order TENO5 scheme, achieves one-order of accuracy improvement by adaptively adjusting the values of the free-parameter introduced by perturbed polynomial reconstruction. Subsequently, the AH-1 helicopter model rotor undergoing blade-vortex interaction is analyzed using the improved rotor flowfield solver and the Farassat-1A formula. The implementation of the TENO-P scheme notably enhances the resolution of the rotor flowfield solver in resolving the blade tip vortex structures, and the predicted noise results are in good agreement with the experimental data. Finally, the alteration of the BVI noise and its reduction mechanism of the AH-1 model rotor under different Higher Harmonic Controls (HHC) are analyzed. The findings show that the phase modulation margin increases with a decrease in harmonic order, and the noise reduction effect significantly improves as well. The negative component of the higher harmonic control is beneficial for reducing BVI noise while the positive component of the higher harmonic control exacerbates the BVI noise. The HHC reduces the collective pitch angle in the region where the tip vortex is about to be disturbed, decreasing the strength of the blade tip vortex in this region. This reduction weakens the strength of the parallel and near-parallel interaction on the advancing side, leads to the reduction of the positive peak impulsive of the BVI noise, and consequently lowers the intensity of the BVI noise.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"155 ","pages":"Article 109609"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation on the blade vortex interaction noise reduction using higher harmonic control\",\"authors\":\"Tao Yang, Yan Ding, Xi Chen, Qijun Zhao\",\"doi\":\"10.1016/j.ast.2024.109609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurately predicting the formation, evolution, and breakdown of helicopter blade tip vortex is crucial for simulating the Blade-Vortex Interaction (BVI) phenomenon. Firstly, the high-order Perturbed polynomial reconstructed Targeted Essentially Non-Oscillatory (TENO-P) scheme proposed by our research group is employed to improve the resolution of the helicopter rotor flowfield solver. The TENO-P scheme, building on the fifth-order TENO5 scheme, achieves one-order of accuracy improvement by adaptively adjusting the values of the free-parameter introduced by perturbed polynomial reconstruction. Subsequently, the AH-1 helicopter model rotor undergoing blade-vortex interaction is analyzed using the improved rotor flowfield solver and the Farassat-1A formula. The implementation of the TENO-P scheme notably enhances the resolution of the rotor flowfield solver in resolving the blade tip vortex structures, and the predicted noise results are in good agreement with the experimental data. Finally, the alteration of the BVI noise and its reduction mechanism of the AH-1 model rotor under different Higher Harmonic Controls (HHC) are analyzed. The findings show that the phase modulation margin increases with a decrease in harmonic order, and the noise reduction effect significantly improves as well. The negative component of the higher harmonic control is beneficial for reducing BVI noise while the positive component of the higher harmonic control exacerbates the BVI noise. The HHC reduces the collective pitch angle in the region where the tip vortex is about to be disturbed, decreasing the strength of the blade tip vortex in this region. This reduction weakens the strength of the parallel and near-parallel interaction on the advancing side, leads to the reduction of the positive peak impulsive of the BVI noise, and consequently lowers the intensity of the BVI noise.</div></div>\",\"PeriodicalId\":50955,\"journal\":{\"name\":\"Aerospace Science and Technology\",\"volume\":\"155 \",\"pages\":\"Article 109609\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1270963824007387\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824007387","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Numerical investigation on the blade vortex interaction noise reduction using higher harmonic control
Accurately predicting the formation, evolution, and breakdown of helicopter blade tip vortex is crucial for simulating the Blade-Vortex Interaction (BVI) phenomenon. Firstly, the high-order Perturbed polynomial reconstructed Targeted Essentially Non-Oscillatory (TENO-P) scheme proposed by our research group is employed to improve the resolution of the helicopter rotor flowfield solver. The TENO-P scheme, building on the fifth-order TENO5 scheme, achieves one-order of accuracy improvement by adaptively adjusting the values of the free-parameter introduced by perturbed polynomial reconstruction. Subsequently, the AH-1 helicopter model rotor undergoing blade-vortex interaction is analyzed using the improved rotor flowfield solver and the Farassat-1A formula. The implementation of the TENO-P scheme notably enhances the resolution of the rotor flowfield solver in resolving the blade tip vortex structures, and the predicted noise results are in good agreement with the experimental data. Finally, the alteration of the BVI noise and its reduction mechanism of the AH-1 model rotor under different Higher Harmonic Controls (HHC) are analyzed. The findings show that the phase modulation margin increases with a decrease in harmonic order, and the noise reduction effect significantly improves as well. The negative component of the higher harmonic control is beneficial for reducing BVI noise while the positive component of the higher harmonic control exacerbates the BVI noise. The HHC reduces the collective pitch angle in the region where the tip vortex is about to be disturbed, decreasing the strength of the blade tip vortex in this region. This reduction weakens the strength of the parallel and near-parallel interaction on the advancing side, leads to the reduction of the positive peak impulsive of the BVI noise, and consequently lowers the intensity of the BVI noise.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.