{"title":"用于近距离空间作业的激光雷达自适应参数选择和目标指向控制","authors":"Alessia Nocerino, Roberto Opromolla, Giancarmine Fasano, Michele Grassi","doi":"10.1016/j.ast.2024.109646","DOIUrl":null,"url":null,"abstract":"<div><div>This paper deals with advanced Guidance, Navigation and Control (GNC) functions required to enable autonomous and safe operations of a chaser spacecraft in close-proximity to an uncooperative space target, as in Active Debris Removal or On-Orbit servicing scenarios. Specifically, it presents an original approach to autonomously and adaptively select the field of view and resolution of a scanning LIDAR to improve both state estimation accuracy and computational efficiency of a LIDAR-based relative navigation system. In general, the correct operation of such system is also determined by the capability to keep the boresight axis of the relative navigation sensor aligned with the target geometric center. To address this task, an original control technique, based on the sliding-mode formulation and relying on a reduced attitude representation, is proposed. This control scheme is also compared to state-of-the-art PD and PID approaches in terms of pointing accuracy and control effort. The proposed techniques have been numerically validated in a simulation environment integrating the chaser attitude control and the LIDAR-based relative navigation functions in a closed-loop architecture. The simulation environment realistically reproduces the generation of LIDAR-based point clouds, and the spacecraft relative dynamics in close proximity. Results show that the adaptive selection of the LIDAR operational parameters improves the relative navigation performance, while the proposed sliding-mode control guarantees higher pointing accuracy than PD and PID control approaches.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"155 ","pages":"Article 109646"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LIDAR adaptive parameters selection and target pointing control for close-proximity space operations\",\"authors\":\"Alessia Nocerino, Roberto Opromolla, Giancarmine Fasano, Michele Grassi\",\"doi\":\"10.1016/j.ast.2024.109646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper deals with advanced Guidance, Navigation and Control (GNC) functions required to enable autonomous and safe operations of a chaser spacecraft in close-proximity to an uncooperative space target, as in Active Debris Removal or On-Orbit servicing scenarios. Specifically, it presents an original approach to autonomously and adaptively select the field of view and resolution of a scanning LIDAR to improve both state estimation accuracy and computational efficiency of a LIDAR-based relative navigation system. In general, the correct operation of such system is also determined by the capability to keep the boresight axis of the relative navigation sensor aligned with the target geometric center. To address this task, an original control technique, based on the sliding-mode formulation and relying on a reduced attitude representation, is proposed. This control scheme is also compared to state-of-the-art PD and PID approaches in terms of pointing accuracy and control effort. The proposed techniques have been numerically validated in a simulation environment integrating the chaser attitude control and the LIDAR-based relative navigation functions in a closed-loop architecture. The simulation environment realistically reproduces the generation of LIDAR-based point clouds, and the spacecraft relative dynamics in close proximity. Results show that the adaptive selection of the LIDAR operational parameters improves the relative navigation performance, while the proposed sliding-mode control guarantees higher pointing accuracy than PD and PID control approaches.</div></div>\",\"PeriodicalId\":50955,\"journal\":{\"name\":\"Aerospace Science and Technology\",\"volume\":\"155 \",\"pages\":\"Article 109646\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1270963824007752\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824007752","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
LIDAR adaptive parameters selection and target pointing control for close-proximity space operations
This paper deals with advanced Guidance, Navigation and Control (GNC) functions required to enable autonomous and safe operations of a chaser spacecraft in close-proximity to an uncooperative space target, as in Active Debris Removal or On-Orbit servicing scenarios. Specifically, it presents an original approach to autonomously and adaptively select the field of view and resolution of a scanning LIDAR to improve both state estimation accuracy and computational efficiency of a LIDAR-based relative navigation system. In general, the correct operation of such system is also determined by the capability to keep the boresight axis of the relative navigation sensor aligned with the target geometric center. To address this task, an original control technique, based on the sliding-mode formulation and relying on a reduced attitude representation, is proposed. This control scheme is also compared to state-of-the-art PD and PID approaches in terms of pointing accuracy and control effort. The proposed techniques have been numerically validated in a simulation environment integrating the chaser attitude control and the LIDAR-based relative navigation functions in a closed-loop architecture. The simulation environment realistically reproduces the generation of LIDAR-based point clouds, and the spacecraft relative dynamics in close proximity. Results show that the adaptive selection of the LIDAR operational parameters improves the relative navigation performance, while the proposed sliding-mode control guarantees higher pointing accuracy than PD and PID control approaches.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.