{"title":"用于储氢的带整体管状高压罐机翼的多目标优化","authors":"Florian Dexl, Andreas Hauffe, Johannes Markmiller","doi":"10.1016/j.ast.2024.109647","DOIUrl":null,"url":null,"abstract":"<div><div>Reducing the environmental impact of air transport is one of today's most important challenges in aviation industry and research. A promising key enabler is the use of hydrogen as an alternative to fossil fuels. The development of hydrogen-powered aircraft poses new engineering challenges due to its low volumetric energy density requiring high-pressure or cryogenic storage. If the volume in the wing shall be further used for storing hydrogen under high pressure, new demands arise to airfoil design. The present work focuses on this issue by presenting a multi-objective optimization approach aiming for airfoils with both low drag and high volume for internal tubular high-pressure tanks. This allows to directly address the new design objective and to find novel airfoil shapes providing the best compromise between aerodynamic efficiency and high storage volume for pressurized hydrogen. The resulting optimization problem is solved using Evolutionary Algorithms. For an efficient aerodynamic evaluation, the open source viscous-inviscid panel method XFOIL is used. An application example, based on the flight conditions of a general aviation aircraft, demonstrates the applicability of the method. Comparisons of the resulting aerodynamic characteristics obtained by XFOIL with RANS simulations confirm the feasibility of the results.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"155 ","pages":"Article 109647"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-objective optimization of airfoils with integral tubular high-pressure tanks for hydrogen storage\",\"authors\":\"Florian Dexl, Andreas Hauffe, Johannes Markmiller\",\"doi\":\"10.1016/j.ast.2024.109647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Reducing the environmental impact of air transport is one of today's most important challenges in aviation industry and research. A promising key enabler is the use of hydrogen as an alternative to fossil fuels. The development of hydrogen-powered aircraft poses new engineering challenges due to its low volumetric energy density requiring high-pressure or cryogenic storage. If the volume in the wing shall be further used for storing hydrogen under high pressure, new demands arise to airfoil design. The present work focuses on this issue by presenting a multi-objective optimization approach aiming for airfoils with both low drag and high volume for internal tubular high-pressure tanks. This allows to directly address the new design objective and to find novel airfoil shapes providing the best compromise between aerodynamic efficiency and high storage volume for pressurized hydrogen. The resulting optimization problem is solved using Evolutionary Algorithms. For an efficient aerodynamic evaluation, the open source viscous-inviscid panel method XFOIL is used. An application example, based on the flight conditions of a general aviation aircraft, demonstrates the applicability of the method. Comparisons of the resulting aerodynamic characteristics obtained by XFOIL with RANS simulations confirm the feasibility of the results.</div></div>\",\"PeriodicalId\":50955,\"journal\":{\"name\":\"Aerospace Science and Technology\",\"volume\":\"155 \",\"pages\":\"Article 109647\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1270963824007764\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824007764","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Multi-objective optimization of airfoils with integral tubular high-pressure tanks for hydrogen storage
Reducing the environmental impact of air transport is one of today's most important challenges in aviation industry and research. A promising key enabler is the use of hydrogen as an alternative to fossil fuels. The development of hydrogen-powered aircraft poses new engineering challenges due to its low volumetric energy density requiring high-pressure or cryogenic storage. If the volume in the wing shall be further used for storing hydrogen under high pressure, new demands arise to airfoil design. The present work focuses on this issue by presenting a multi-objective optimization approach aiming for airfoils with both low drag and high volume for internal tubular high-pressure tanks. This allows to directly address the new design objective and to find novel airfoil shapes providing the best compromise between aerodynamic efficiency and high storage volume for pressurized hydrogen. The resulting optimization problem is solved using Evolutionary Algorithms. For an efficient aerodynamic evaluation, the open source viscous-inviscid panel method XFOIL is used. An application example, based on the flight conditions of a general aviation aircraft, demonstrates the applicability of the method. Comparisons of the resulting aerodynamic characteristics obtained by XFOIL with RANS simulations confirm the feasibility of the results.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.