高负荷轴流压缩机的空气动力优化设计和实验验证

IF 5 1区 工程技术 Q1 ENGINEERING, AEROSPACE Aerospace Science and Technology Pub Date : 2024-09-30 DOI:10.1016/j.ast.2024.109638
Song Huang , Chengwu Yang , Peng Wang
{"title":"高负荷轴流压缩机的空气动力优化设计和实验验证","authors":"Song Huang ,&nbsp;Chengwu Yang ,&nbsp;Peng Wang","doi":"10.1016/j.ast.2024.109638","DOIUrl":null,"url":null,"abstract":"<div><div>The performance and stable operating range of compressors are critical to the efficient operation of various turbomachinery systems. This paper proposes a multi-level optimization strategy combining the uni-uniform direct free deformation method, Linux partitioned CPU accelerated parallel computing technology, multi-objective particle swarm optimization algorithm and downhill simplex algorithm, which improves design efficiency. Numerical results show that after optimization design, the average value of peak efficiency and stall margin increases. The flow mechanism of compressor performance improvement after optimization lies in the reduction of a low-velocity separation zone in stator hub region. Moreover, the experiment study confirms the reliability and accuracy of the optimization design method and found that flow instability triggering mode, propagation characteristics of the stall cell, and surge frequency are changed after optimization design. Setting a probability distribution threshold for autocorrelation coefficient and cross-correlation coefficients can be used to predict the arrival of the surge condition.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"155 ","pages":"Article 109638"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aerodynamic optimization design and experimental verification of a high-load axial flow compressor\",\"authors\":\"Song Huang ,&nbsp;Chengwu Yang ,&nbsp;Peng Wang\",\"doi\":\"10.1016/j.ast.2024.109638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The performance and stable operating range of compressors are critical to the efficient operation of various turbomachinery systems. This paper proposes a multi-level optimization strategy combining the uni-uniform direct free deformation method, Linux partitioned CPU accelerated parallel computing technology, multi-objective particle swarm optimization algorithm and downhill simplex algorithm, which improves design efficiency. Numerical results show that after optimization design, the average value of peak efficiency and stall margin increases. The flow mechanism of compressor performance improvement after optimization lies in the reduction of a low-velocity separation zone in stator hub region. Moreover, the experiment study confirms the reliability and accuracy of the optimization design method and found that flow instability triggering mode, propagation characteristics of the stall cell, and surge frequency are changed after optimization design. Setting a probability distribution threshold for autocorrelation coefficient and cross-correlation coefficients can be used to predict the arrival of the surge condition.</div></div>\",\"PeriodicalId\":50955,\"journal\":{\"name\":\"Aerospace Science and Technology\",\"volume\":\"155 \",\"pages\":\"Article 109638\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1270963824007673\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824007673","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

压缩机的性能和稳定的工作范围对各种透平机械系统的高效运行至关重要。本文提出了结合单均匀直接自由变形法、Linux 分区 CPU 加速并行计算技术、多目标粒子群优化算法和下坡单纯形算法的多层次优化策略,提高了设计效率。数值结果表明,经过优化设计后,峰值效率和失速裕度的平均值都有所提高。优化后压缩机性能改善的流动机制在于定子轮毂区域低速分离区的减少。此外,实验研究证实了优化设计方法的可靠性和准确性,并发现优化设计后流动不稳定的触发模式、失速单元的传播特性和浪涌频率都发生了变化。设置自相关系数和交叉相关系数的概率分布阈值可用于预测浪涌条件的到来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aerodynamic optimization design and experimental verification of a high-load axial flow compressor
The performance and stable operating range of compressors are critical to the efficient operation of various turbomachinery systems. This paper proposes a multi-level optimization strategy combining the uni-uniform direct free deformation method, Linux partitioned CPU accelerated parallel computing technology, multi-objective particle swarm optimization algorithm and downhill simplex algorithm, which improves design efficiency. Numerical results show that after optimization design, the average value of peak efficiency and stall margin increases. The flow mechanism of compressor performance improvement after optimization lies in the reduction of a low-velocity separation zone in stator hub region. Moreover, the experiment study confirms the reliability and accuracy of the optimization design method and found that flow instability triggering mode, propagation characteristics of the stall cell, and surge frequency are changed after optimization design. Setting a probability distribution threshold for autocorrelation coefficient and cross-correlation coefficients can be used to predict the arrival of the surge condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerospace Science and Technology
Aerospace Science and Technology 工程技术-工程:宇航
CiteScore
10.30
自引率
28.60%
发文量
654
审稿时长
54 days
期刊介绍: Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to: • The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites • The control of their environment • The study of various systems they are involved in, as supports or as targets. Authors are invited to submit papers on new advances in the following topics to aerospace applications: • Fluid dynamics • Energetics and propulsion • Materials and structures • Flight mechanics • Navigation, guidance and control • Acoustics • Optics • Electromagnetism and radar • Signal and image processing • Information processing • Data fusion • Decision aid • Human behaviour • Robotics and intelligent systems • Complex system engineering. Etc.
期刊最新文献
A preliminary investigation on a novel vortex-controlled flameholder for aircraft engine combustor Aerodynamics evaluation and flight test of a vertical take-off and landing fixed-wing UAV with joined-wing configuration in transition flight state Adaptive neural network based fixed-time attitude tracking control of spacecraft considering input saturation Multi-physical fields prediction model for turbine cascades based on physical information neural networks Design approach for tilt propellers of UAM/eVTOLs for cruise and hover considering aerodynamic and aeroacoustic characteristics via a multi-fidelity model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1