Xiang Tang , Bo Zhang , Jiahang Li , Meng Huang , Xiaotao Tian , Yixiao Song
{"title":"热扼流固体燃料联合循环发动机分布式燃烧的数值研究","authors":"Xiang Tang , Bo Zhang , Jiahang Li , Meng Huang , Xiaotao Tian , Yixiao Song","doi":"10.1016/j.ast.2024.109635","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a solid fuel combined cycle engine concept based on the distributed combustion and the self-adaptive thermal choking is proposed, which can operate effectively within a wide Mach number range. By regulating the heat release through the distributed fuel injection, the thermal choking can be formed in the fixed geometry combustor. The air intake controls the flow capture and circulation area through the movement of its head cone, ensuring stable air breathing over a wide range. Numerical simulations conducted under Ma = 3.0 and 6.0 conditions using the validated Eulerian-Lagrangian method coupled with gaseous and particle reaction models demonstrate the concept's capability to operate within the Mach number range of 3.0–6.0, delivering improved mixing, combustion, and specific impulse performance.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"155 ","pages":"Article 109635"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation of the distributed combustion in the thermal choked solid fuel combined cycle engine\",\"authors\":\"Xiang Tang , Bo Zhang , Jiahang Li , Meng Huang , Xiaotao Tian , Yixiao Song\",\"doi\":\"10.1016/j.ast.2024.109635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, a solid fuel combined cycle engine concept based on the distributed combustion and the self-adaptive thermal choking is proposed, which can operate effectively within a wide Mach number range. By regulating the heat release through the distributed fuel injection, the thermal choking can be formed in the fixed geometry combustor. The air intake controls the flow capture and circulation area through the movement of its head cone, ensuring stable air breathing over a wide range. Numerical simulations conducted under Ma = 3.0 and 6.0 conditions using the validated Eulerian-Lagrangian method coupled with gaseous and particle reaction models demonstrate the concept's capability to operate within the Mach number range of 3.0–6.0, delivering improved mixing, combustion, and specific impulse performance.</div></div>\",\"PeriodicalId\":50955,\"journal\":{\"name\":\"Aerospace Science and Technology\",\"volume\":\"155 \",\"pages\":\"Article 109635\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1270963824007648\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824007648","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
摘要
本研究提出了一种基于分布式燃烧和自适应热扼流的固体燃料联合循环发动机概念,它可以在很宽的马赫数范围内有效运行。通过分布式燃料喷射调节热量释放,可在固定几何形状的燃烧器中形成热窒息。进气口通过其头部锥体的运动控制气流捕获和循环面积,确保在宽范围内稳定呼吸空气。在 Ma = 3.0 和 6.0 条件下,使用经过验证的欧拉-拉格朗日方法以及气态和颗粒反应模型进行的数值模拟表明,该概念能够在 3.0-6.0 马赫数范围内运行,并提供更好的混合、燃烧和比冲性能。
Numerical investigation of the distributed combustion in the thermal choked solid fuel combined cycle engine
In this study, a solid fuel combined cycle engine concept based on the distributed combustion and the self-adaptive thermal choking is proposed, which can operate effectively within a wide Mach number range. By regulating the heat release through the distributed fuel injection, the thermal choking can be formed in the fixed geometry combustor. The air intake controls the flow capture and circulation area through the movement of its head cone, ensuring stable air breathing over a wide range. Numerical simulations conducted under Ma = 3.0 and 6.0 conditions using the validated Eulerian-Lagrangian method coupled with gaseous and particle reaction models demonstrate the concept's capability to operate within the Mach number range of 3.0–6.0, delivering improved mixing, combustion, and specific impulse performance.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.