{"title":"估算故障可能性的新型定向模拟方法","authors":"Xia Jiang , Zhenzhou Lu , Michael Beer","doi":"10.1016/j.ast.2024.109627","DOIUrl":null,"url":null,"abstract":"<div><div>Failure possibility plays a crucial role in assessing the safety level of structures under fuzzy uncertainty. However, the traditional fuzzy simulation method suffers from computational inefficiency as it requires a large number of samples for accurate estimation. To address this issue, a directional simulation method is proposed to improve the efficiency of estimating failure possibility. The directional simulation method reformulates the failure possibility estimation into two key steps: the generation of direction samples and the estimation of conditional failure possibility under each direction sample in the polar coordinate system of the standard fuzzy space. To ensure direction uniformity, these direction samples are generated by adopting a good lattice point set based on stratified sampling on the unit hypercube. The conditional failure possibility under each direction sample is estimated by solving the minimum root of a nonlinear equation. The proposed method effectively reduces the dimensionality of the fuzzy input and greatly improves the computational efficiency. To further enhance efficiency, an adaptive Kriging model is embedded into the directional simulation method to reduce the number of performance function evaluations. Four examples are performed to illustrate the accuracy and efficiency of the proposed method. The results highlight the superiority of the directional simulation method over the traditional fuzzy simulation method, offering substantial improvements in computational efficiency while maintaining high estimation accuracy.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"155 ","pages":"Article 109627"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel directional simulation method for estimating failure possibility\",\"authors\":\"Xia Jiang , Zhenzhou Lu , Michael Beer\",\"doi\":\"10.1016/j.ast.2024.109627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Failure possibility plays a crucial role in assessing the safety level of structures under fuzzy uncertainty. However, the traditional fuzzy simulation method suffers from computational inefficiency as it requires a large number of samples for accurate estimation. To address this issue, a directional simulation method is proposed to improve the efficiency of estimating failure possibility. The directional simulation method reformulates the failure possibility estimation into two key steps: the generation of direction samples and the estimation of conditional failure possibility under each direction sample in the polar coordinate system of the standard fuzzy space. To ensure direction uniformity, these direction samples are generated by adopting a good lattice point set based on stratified sampling on the unit hypercube. The conditional failure possibility under each direction sample is estimated by solving the minimum root of a nonlinear equation. The proposed method effectively reduces the dimensionality of the fuzzy input and greatly improves the computational efficiency. To further enhance efficiency, an adaptive Kriging model is embedded into the directional simulation method to reduce the number of performance function evaluations. Four examples are performed to illustrate the accuracy and efficiency of the proposed method. The results highlight the superiority of the directional simulation method over the traditional fuzzy simulation method, offering substantial improvements in computational efficiency while maintaining high estimation accuracy.</div></div>\",\"PeriodicalId\":50955,\"journal\":{\"name\":\"Aerospace Science and Technology\",\"volume\":\"155 \",\"pages\":\"Article 109627\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1270963824007569\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824007569","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
A novel directional simulation method for estimating failure possibility
Failure possibility plays a crucial role in assessing the safety level of structures under fuzzy uncertainty. However, the traditional fuzzy simulation method suffers from computational inefficiency as it requires a large number of samples for accurate estimation. To address this issue, a directional simulation method is proposed to improve the efficiency of estimating failure possibility. The directional simulation method reformulates the failure possibility estimation into two key steps: the generation of direction samples and the estimation of conditional failure possibility under each direction sample in the polar coordinate system of the standard fuzzy space. To ensure direction uniformity, these direction samples are generated by adopting a good lattice point set based on stratified sampling on the unit hypercube. The conditional failure possibility under each direction sample is estimated by solving the minimum root of a nonlinear equation. The proposed method effectively reduces the dimensionality of the fuzzy input and greatly improves the computational efficiency. To further enhance efficiency, an adaptive Kriging model is embedded into the directional simulation method to reduce the number of performance function evaluations. Four examples are performed to illustrate the accuracy and efficiency of the proposed method. The results highlight the superiority of the directional simulation method over the traditional fuzzy simulation method, offering substantial improvements in computational efficiency while maintaining high estimation accuracy.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.