结合生命周期评估和动态定性比较分析,分析中国不同省份城市发展对环境的影响

IF 10.9 1区 环境科学与生态学 Q1 ENVIRONMENTAL STUDIES Sustainable Production and Consumption Pub Date : 2024-10-06 DOI:10.1016/j.spc.2024.09.026
{"title":"结合生命周期评估和动态定性比较分析,分析中国不同省份城市发展对环境的影响","authors":"","doi":"10.1016/j.spc.2024.09.026","DOIUrl":null,"url":null,"abstract":"<div><div>Examining the environmental pollution landscape is a vital link for urban development. Across production, distribution, and usage stages of 24 provinces in China between 2010 and 2019, this study conducts Life Cycle Assessment and Dynamic Qualitative Comparative Analysis to explore the effects of conditional combination on environmental impact assessment indicators including Photochemical Oxidation, Eutrophication, Global Warming Potential, Human Toxicity, and Acidification. The results reveal that: (1) Shandong contributes most significantly to environmental impact assessment indicators in the production and distribution stages, while Inner Mongolia dominates the usage stage. In contrast, Beijing, Hainan, and Shanghai show lower contributions, though Hainan exhibits a rising trend in the Global Warming Potential index across all stages; (2) The production stage consistently accounts for the largest environmental impact, with notable differences in contributions from Beijing, Ningxia, Inner Mongolia, and Shanghai across the three stages; (3) Environmental impact is not driven by individual factors alone; rather, it is the combination of factors that proves influential. Complex nonlinear relationships are revealed between energy consumption patterns and environmental impacts in the production stage. The combination of transport operating distance and traffic volume has an interaction during the distribution stage. The usage stage leads only to the environmental impact of Eutrophication, which is caused by the resident population and ecological water consumption excluding residential water use. These findings present a new strategy for optimizing energy structure and water resource utilization, and emphasize the synergies to reduce the environmental impacts, providing instrumental implications for policymakers and government managers in environmental management and urbanization development.</div></div>","PeriodicalId":48619,"journal":{"name":"Sustainable Production and Consumption","volume":null,"pages":null},"PeriodicalIF":10.9000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining life cycle assessment and dynamic qualitative comparative analysis to analyze the environmental impacts of urban development across different provinces in China\",\"authors\":\"\",\"doi\":\"10.1016/j.spc.2024.09.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Examining the environmental pollution landscape is a vital link for urban development. Across production, distribution, and usage stages of 24 provinces in China between 2010 and 2019, this study conducts Life Cycle Assessment and Dynamic Qualitative Comparative Analysis to explore the effects of conditional combination on environmental impact assessment indicators including Photochemical Oxidation, Eutrophication, Global Warming Potential, Human Toxicity, and Acidification. The results reveal that: (1) Shandong contributes most significantly to environmental impact assessment indicators in the production and distribution stages, while Inner Mongolia dominates the usage stage. In contrast, Beijing, Hainan, and Shanghai show lower contributions, though Hainan exhibits a rising trend in the Global Warming Potential index across all stages; (2) The production stage consistently accounts for the largest environmental impact, with notable differences in contributions from Beijing, Ningxia, Inner Mongolia, and Shanghai across the three stages; (3) Environmental impact is not driven by individual factors alone; rather, it is the combination of factors that proves influential. Complex nonlinear relationships are revealed between energy consumption patterns and environmental impacts in the production stage. The combination of transport operating distance and traffic volume has an interaction during the distribution stage. The usage stage leads only to the environmental impact of Eutrophication, which is caused by the resident population and ecological water consumption excluding residential water use. These findings present a new strategy for optimizing energy structure and water resource utilization, and emphasize the synergies to reduce the environmental impacts, providing instrumental implications for policymakers and government managers in environmental management and urbanization development.</div></div>\",\"PeriodicalId\":48619,\"journal\":{\"name\":\"Sustainable Production and Consumption\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2024-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Production and Consumption\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352550924002835\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Production and Consumption","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352550924002835","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0

摘要

考察环境污染状况是城市发展的重要环节。本研究采用生命周期评估和动态定性比较分析方法,探讨了 2010 年至 2019 年期间,中国 24 个省在生产、流通和使用阶段,条件组合对光化学氧化、富营养化、全球变暖潜势、人体毒性和酸化等环境影响评价指标的影响。结果表明(1) 山东在生产和流通阶段对环境影响评价指标的贡献最大,而内蒙古则在使用阶段占主导地位。相比之下,北京、海南和上海的贡献率较低,但海南的全球变暖潜势指数在所有阶段都呈上升趋势;(2) 生产阶段对环境的影响最大,而北京、宁夏、内蒙古和上海在三个阶段的贡献率存在明显差异;(3) 环境影响并非由单个因素单独驱动,而是综合因素的影响。生产阶段的能源消耗模式与环境影响之间存在复杂的非线性关系。在配送阶段,运输作业距离和运输量的组合会产生相互作用。使用阶段仅导致富营养化的环境影响,而富营养化是由常住人口和生态用水(不包括居民用水)造成的。这些研究结果提出了优化能源结构和水资源利用的新策略,强调了减少环境影响的协同作用,为决策者和政府管理者在环境管理和城市化发展方面提供了有益的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining life cycle assessment and dynamic qualitative comparative analysis to analyze the environmental impacts of urban development across different provinces in China
Examining the environmental pollution landscape is a vital link for urban development. Across production, distribution, and usage stages of 24 provinces in China between 2010 and 2019, this study conducts Life Cycle Assessment and Dynamic Qualitative Comparative Analysis to explore the effects of conditional combination on environmental impact assessment indicators including Photochemical Oxidation, Eutrophication, Global Warming Potential, Human Toxicity, and Acidification. The results reveal that: (1) Shandong contributes most significantly to environmental impact assessment indicators in the production and distribution stages, while Inner Mongolia dominates the usage stage. In contrast, Beijing, Hainan, and Shanghai show lower contributions, though Hainan exhibits a rising trend in the Global Warming Potential index across all stages; (2) The production stage consistently accounts for the largest environmental impact, with notable differences in contributions from Beijing, Ningxia, Inner Mongolia, and Shanghai across the three stages; (3) Environmental impact is not driven by individual factors alone; rather, it is the combination of factors that proves influential. Complex nonlinear relationships are revealed between energy consumption patterns and environmental impacts in the production stage. The combination of transport operating distance and traffic volume has an interaction during the distribution stage. The usage stage leads only to the environmental impact of Eutrophication, which is caused by the resident population and ecological water consumption excluding residential water use. These findings present a new strategy for optimizing energy structure and water resource utilization, and emphasize the synergies to reduce the environmental impacts, providing instrumental implications for policymakers and government managers in environmental management and urbanization development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Production and Consumption
Sustainable Production and Consumption Environmental Science-Environmental Engineering
CiteScore
17.40
自引率
7.40%
发文量
389
审稿时长
13 days
期刊介绍: Sustainable production and consumption refers to the production and utilization of goods and services in a way that benefits society, is economically viable, and has minimal environmental impact throughout its entire lifespan. Our journal is dedicated to publishing top-notch interdisciplinary research and practical studies in this emerging field. We take a distinctive approach by examining the interplay between technology, consumption patterns, and policy to identify sustainable solutions for both production and consumption systems.
期刊最新文献
Residential water choices: Assessing the willingness to adopt alternative water sources by examining risk perceptions and personal norms in Belgium Global nutrient content embedded in food losses and waste: Identifying the sources and magnitude along the food supply chain Global projections of plastic use, end-of-life fate and potential changes in consumption, reduction, recycling and replacement with bioplastics to 2050 What should be understood to promote environmentally sustainable diets? Transitioning towards circular households: Exploring influential factors and constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1