Yi Liu , Rui Xu , Yanhui Zhang , Jianli Wang , Shanhong Wan , Liuyang Bai
{"title":"对振动诱导软化效应的见解:热力学方法","authors":"Yi Liu , Rui Xu , Yanhui Zhang , Jianli Wang , Shanhong Wan , Liuyang Bai","doi":"10.1016/j.wear.2024.205588","DOIUrl":null,"url":null,"abstract":"<div><div>This work investigates the wear behavior of nickel-based alloy during ultrasonic vibration-assisted machining (UVAM) by combining molecular dynamics simulation and thermodynamic theory. The research reveals that the tangential force exhibits periodic variations during UVAM, with a period half of the vibration period. Tangential force and total resistance decrease due to the synergistic effect of vibration-induced softening and thermal softening. A deeper understanding of the total resistance variation during the UVAM process can be achieved by the dimensionless resistance coefficient, which is difficult for the traditional friction coefficient (CoF). The Bejan number elucidates the contributions of the thermal softening and vibration-induced softening effects in the wear process. The findings highlight that the vibration-induced softening effect dominates when adjusting the amplitude for the active control of friction. In contrast, when the frequency is modulated, the contributions of vibration-induced softening and thermal softening effects are nearly equivalent. Furthermore, the wear mode transitions with increasing vibration frequency, characterized by the Strouhal number (<em>Sr</em><sub><em>w</em></sub>). The vibration wear mode attains dominance when <em>Sr</em><sub><em>w</em></sub> > 1.88. This work provides essential theoretical guidance to gain insight into the wear behavior in UVAM to optimize the machining performance.</div></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into vibration-induced softening effect: A thermodynamic approach\",\"authors\":\"Yi Liu , Rui Xu , Yanhui Zhang , Jianli Wang , Shanhong Wan , Liuyang Bai\",\"doi\":\"10.1016/j.wear.2024.205588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work investigates the wear behavior of nickel-based alloy during ultrasonic vibration-assisted machining (UVAM) by combining molecular dynamics simulation and thermodynamic theory. The research reveals that the tangential force exhibits periodic variations during UVAM, with a period half of the vibration period. Tangential force and total resistance decrease due to the synergistic effect of vibration-induced softening and thermal softening. A deeper understanding of the total resistance variation during the UVAM process can be achieved by the dimensionless resistance coefficient, which is difficult for the traditional friction coefficient (CoF). The Bejan number elucidates the contributions of the thermal softening and vibration-induced softening effects in the wear process. The findings highlight that the vibration-induced softening effect dominates when adjusting the amplitude for the active control of friction. In contrast, when the frequency is modulated, the contributions of vibration-induced softening and thermal softening effects are nearly equivalent. Furthermore, the wear mode transitions with increasing vibration frequency, characterized by the Strouhal number (<em>Sr</em><sub><em>w</em></sub>). The vibration wear mode attains dominance when <em>Sr</em><sub><em>w</em></sub> > 1.88. This work provides essential theoretical guidance to gain insight into the wear behavior in UVAM to optimize the machining performance.</div></div>\",\"PeriodicalId\":23970,\"journal\":{\"name\":\"Wear\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wear\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0043164824003533\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wear","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043164824003533","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Insights into vibration-induced softening effect: A thermodynamic approach
This work investigates the wear behavior of nickel-based alloy during ultrasonic vibration-assisted machining (UVAM) by combining molecular dynamics simulation and thermodynamic theory. The research reveals that the tangential force exhibits periodic variations during UVAM, with a period half of the vibration period. Tangential force and total resistance decrease due to the synergistic effect of vibration-induced softening and thermal softening. A deeper understanding of the total resistance variation during the UVAM process can be achieved by the dimensionless resistance coefficient, which is difficult for the traditional friction coefficient (CoF). The Bejan number elucidates the contributions of the thermal softening and vibration-induced softening effects in the wear process. The findings highlight that the vibration-induced softening effect dominates when adjusting the amplitude for the active control of friction. In contrast, when the frequency is modulated, the contributions of vibration-induced softening and thermal softening effects are nearly equivalent. Furthermore, the wear mode transitions with increasing vibration frequency, characterized by the Strouhal number (Srw). The vibration wear mode attains dominance when Srw > 1.88. This work provides essential theoretical guidance to gain insight into the wear behavior in UVAM to optimize the machining performance.
期刊介绍:
Wear journal is dedicated to the advancement of basic and applied knowledge concerning the nature of wear of materials. Broadly, topics of interest range from development of fundamental understanding of the mechanisms of wear to innovative solutions to practical engineering problems. Authors of experimental studies are expected to comment on the repeatability of the data, and whenever possible, conduct multiple measurements under similar testing conditions. Further, Wear embraces the highest standards of professional ethics, and the detection of matching content, either in written or graphical form, from other publications by the current authors or by others, may result in rejection.