Bhanupratap Singh Solanki , Hoyoung Lim , Seok Jun Yoon , Hyung Chul Ham , Han Saem Park , Ha Eun Lee , See Hoon Lee
{"title":"非贵金属催化剂在利用 NH3 分解制氢方面的最新进展","authors":"Bhanupratap Singh Solanki , Hoyoung Lim , Seok Jun Yoon , Hyung Chul Ham , Han Saem Park , Ha Eun Lee , See Hoon Lee","doi":"10.1016/j.rser.2024.114974","DOIUrl":null,"url":null,"abstract":"<div><div>Paradigm transition towards green, clean and sustainable energy sources to reduce the global carbon footprint propelling the current energy market towards hydrogen economy due to the much reliable, carbon neutral and near zero emission properties though safe transportation and storage of hydrogen is a big challenge. Owing to its remarkable hydrogen content, easy storage and safe handling, NH<sub>3</sub> is the most suitable hydrogen carrier. Considering the energy potential of NH<sub>3</sub>, this review, focus on the thermocatalytic decomposition of NH<sub>3</sub> for CO<sub>x</sub> free production of H<sub>2</sub> on non-noble metal catalysts. Taking cost effectivity and scalability into account, recent development in design of inexpensive catalysts with metal components having less global warming potential are covered. A comprehensive survey and comparative assessment of recent (particularly post 2014) Co, Ni, Fe, Mo, metal carbides, imides, bimetallic and multimetallic catalysts with established benchmark catalysts is presented here. Effect of various promoters and supports on electronic properties, textural properties, reducibility and surface characteristics of catalyst is extensively reviewed. Mutual bimetallic synergism, novel synthetic approaches and reaction mechanism is also highlighted considering their role in successful execution of sustainable ammonia decomposition. A brief description of deactivation challenge of catalysts and measure taken to counter it is also given. Special emphasis is given to the catalysts which have potential of decomposition of ammonia at low temperature (<450 °C). Finally, summary and scope along with brief economic evaluation is presented targeting further development in large-scale production of H<sub>2</sub> from NH<sub>3</sub>.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":null,"pages":null},"PeriodicalIF":16.3000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advancement of non-noble metal catalysts for hydrogen production by NH3 decomposition\",\"authors\":\"Bhanupratap Singh Solanki , Hoyoung Lim , Seok Jun Yoon , Hyung Chul Ham , Han Saem Park , Ha Eun Lee , See Hoon Lee\",\"doi\":\"10.1016/j.rser.2024.114974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Paradigm transition towards green, clean and sustainable energy sources to reduce the global carbon footprint propelling the current energy market towards hydrogen economy due to the much reliable, carbon neutral and near zero emission properties though safe transportation and storage of hydrogen is a big challenge. Owing to its remarkable hydrogen content, easy storage and safe handling, NH<sub>3</sub> is the most suitable hydrogen carrier. Considering the energy potential of NH<sub>3</sub>, this review, focus on the thermocatalytic decomposition of NH<sub>3</sub> for CO<sub>x</sub> free production of H<sub>2</sub> on non-noble metal catalysts. Taking cost effectivity and scalability into account, recent development in design of inexpensive catalysts with metal components having less global warming potential are covered. A comprehensive survey and comparative assessment of recent (particularly post 2014) Co, Ni, Fe, Mo, metal carbides, imides, bimetallic and multimetallic catalysts with established benchmark catalysts is presented here. Effect of various promoters and supports on electronic properties, textural properties, reducibility and surface characteristics of catalyst is extensively reviewed. Mutual bimetallic synergism, novel synthetic approaches and reaction mechanism is also highlighted considering their role in successful execution of sustainable ammonia decomposition. A brief description of deactivation challenge of catalysts and measure taken to counter it is also given. Special emphasis is given to the catalysts which have potential of decomposition of ammonia at low temperature (<450 °C). Finally, summary and scope along with brief economic evaluation is presented targeting further development in large-scale production of H<sub>2</sub> from NH<sub>3</sub>.</div></div>\",\"PeriodicalId\":418,\"journal\":{\"name\":\"Renewable and Sustainable Energy Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable and Sustainable Energy Reviews\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364032124007007\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032124007007","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Recent advancement of non-noble metal catalysts for hydrogen production by NH3 decomposition
Paradigm transition towards green, clean and sustainable energy sources to reduce the global carbon footprint propelling the current energy market towards hydrogen economy due to the much reliable, carbon neutral and near zero emission properties though safe transportation and storage of hydrogen is a big challenge. Owing to its remarkable hydrogen content, easy storage and safe handling, NH3 is the most suitable hydrogen carrier. Considering the energy potential of NH3, this review, focus on the thermocatalytic decomposition of NH3 for COx free production of H2 on non-noble metal catalysts. Taking cost effectivity and scalability into account, recent development in design of inexpensive catalysts with metal components having less global warming potential are covered. A comprehensive survey and comparative assessment of recent (particularly post 2014) Co, Ni, Fe, Mo, metal carbides, imides, bimetallic and multimetallic catalysts with established benchmark catalysts is presented here. Effect of various promoters and supports on electronic properties, textural properties, reducibility and surface characteristics of catalyst is extensively reviewed. Mutual bimetallic synergism, novel synthetic approaches and reaction mechanism is also highlighted considering their role in successful execution of sustainable ammonia decomposition. A brief description of deactivation challenge of catalysts and measure taken to counter it is also given. Special emphasis is given to the catalysts which have potential of decomposition of ammonia at low temperature (<450 °C). Finally, summary and scope along with brief economic evaluation is presented targeting further development in large-scale production of H2 from NH3.
期刊介绍:
The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change.
Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.