Markus C. Berg , Yvonne Sorz , Rainer Hahn , Michael C. Martinetz , Cécile Brocard , Astrid Dürauer
{"title":"简化工艺开发和放大:风险评估以减少初级蛋白质回收的工作量","authors":"Markus C. Berg , Yvonne Sorz , Rainer Hahn , Michael C. Martinetz , Cécile Brocard , Astrid Dürauer","doi":"10.1016/j.bej.2024.109513","DOIUrl":null,"url":null,"abstract":"<div><div>Risk assessment is an integral aspect of the Quality-by-Design strategy to identify potential obstacles at every stage of biopharmaceutical production, from process development to tech transfer. We explored flow process chart, root cause analysis, and failure mode and effects analysis, to assess the scale-up of bacterial cell disruption and its influence on centrifugation and filtration steps. The Ishikawa diagram suggests that data on the impact of homogenizer valve design on product release, impurity profile, particle size distribution, viscosity, and dsDNA fragment size are missing which were collected experimentally for this study. Cell lysates from micro-, lab- and pilot scales cell disruption were analyzed for the above-mentioned parameters. Process parameters affecting these output parameters were identified on each individual scale. Cell disruption on the micro scale was performed in a bead mill. High pressure homogenization was used on lab- and pilot scales. Cell disintegration by bead milling delivers homogenates of product and impurity content comparable to those on bench scale but with 3-fold higher viscosity and significantly larger dsDNA fragments, 8.0 instead of 1.0 kbp, respectively. Miniaturized pressure flow curves identified dsDNA fragment sizes as critical for filter performance during clarification. Combining risk assessment, micro scale cell disintegration and bench scale pressure flow curves allows for selective and efficient process development, and scale up for primary recovery steps.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"212 ","pages":"Article 109513"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Streamlining process development and scale-up: Risk assessment to reduce workload in primary protein recovery\",\"authors\":\"Markus C. Berg , Yvonne Sorz , Rainer Hahn , Michael C. Martinetz , Cécile Brocard , Astrid Dürauer\",\"doi\":\"10.1016/j.bej.2024.109513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Risk assessment is an integral aspect of the Quality-by-Design strategy to identify potential obstacles at every stage of biopharmaceutical production, from process development to tech transfer. We explored flow process chart, root cause analysis, and failure mode and effects analysis, to assess the scale-up of bacterial cell disruption and its influence on centrifugation and filtration steps. The Ishikawa diagram suggests that data on the impact of homogenizer valve design on product release, impurity profile, particle size distribution, viscosity, and dsDNA fragment size are missing which were collected experimentally for this study. Cell lysates from micro-, lab- and pilot scales cell disruption were analyzed for the above-mentioned parameters. Process parameters affecting these output parameters were identified on each individual scale. Cell disruption on the micro scale was performed in a bead mill. High pressure homogenization was used on lab- and pilot scales. Cell disintegration by bead milling delivers homogenates of product and impurity content comparable to those on bench scale but with 3-fold higher viscosity and significantly larger dsDNA fragments, 8.0 instead of 1.0 kbp, respectively. Miniaturized pressure flow curves identified dsDNA fragment sizes as critical for filter performance during clarification. Combining risk assessment, micro scale cell disintegration and bench scale pressure flow curves allows for selective and efficient process development, and scale up for primary recovery steps.</div></div>\",\"PeriodicalId\":8766,\"journal\":{\"name\":\"Biochemical Engineering Journal\",\"volume\":\"212 \",\"pages\":\"Article 109513\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369703X24003000\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X24003000","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Streamlining process development and scale-up: Risk assessment to reduce workload in primary protein recovery
Risk assessment is an integral aspect of the Quality-by-Design strategy to identify potential obstacles at every stage of biopharmaceutical production, from process development to tech transfer. We explored flow process chart, root cause analysis, and failure mode and effects analysis, to assess the scale-up of bacterial cell disruption and its influence on centrifugation and filtration steps. The Ishikawa diagram suggests that data on the impact of homogenizer valve design on product release, impurity profile, particle size distribution, viscosity, and dsDNA fragment size are missing which were collected experimentally for this study. Cell lysates from micro-, lab- and pilot scales cell disruption were analyzed for the above-mentioned parameters. Process parameters affecting these output parameters were identified on each individual scale. Cell disruption on the micro scale was performed in a bead mill. High pressure homogenization was used on lab- and pilot scales. Cell disintegration by bead milling delivers homogenates of product and impurity content comparable to those on bench scale but with 3-fold higher viscosity and significantly larger dsDNA fragments, 8.0 instead of 1.0 kbp, respectively. Miniaturized pressure flow curves identified dsDNA fragment sizes as critical for filter performance during clarification. Combining risk assessment, micro scale cell disintegration and bench scale pressure flow curves allows for selective and efficient process development, and scale up for primary recovery steps.
期刊介绍:
The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology.
The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields:
Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics
Biosensors and Biodevices including biofabrication and novel fuel cell development
Bioseparations including scale-up and protein refolding/renaturation
Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells
Bioreactor Systems including characterization, optimization and scale-up
Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization
Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals
Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release
Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites
Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation
Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis
Protein Engineering including enzyme engineering and directed evolution.