整合热带念珠菌和 Pichia kudriavzevii 降解偶氮染料和积累脂质的方法,以及对潜在代谢组学的深入了解,以处理纺织污水

IF 3.7 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biochemical Engineering Journal Pub Date : 2024-10-09 DOI:10.1016/j.bej.2024.109521
Sadik Dantroliya, Pooja Doshi, Ishan Raval, Chaitanya Joshi, Madhvi Joshi
{"title":"整合热带念珠菌和 Pichia kudriavzevii 降解偶氮染料和积累脂质的方法,以及对潜在代谢组学的深入了解,以处理纺织污水","authors":"Sadik Dantroliya,&nbsp;Pooja Doshi,&nbsp;Ishan Raval,&nbsp;Chaitanya Joshi,&nbsp;Madhvi Joshi","doi":"10.1016/j.bej.2024.109521","DOIUrl":null,"url":null,"abstract":"<div><div>Azo compounds, extensively utilized across various industries, contribute to the release of toxic effluents that are detrimental to both the environment and human health. Traditional methods for azo dye removal often result in harmful byproducts or concentrated sludge, complicating disposal efforts. This study explores the potential of two yeast strains, <em>Candida tropicalis</em> and <em>Pichia kudriavzevii</em>, to effectively decolorize azo dyes (TD4, TD5, and TD6) while simultaneously accumulating lipids. The cultures achieved 80–90 % decolorization of the selected dyes during incubation, with <em>Pichia</em> showing higher efficiency across multiple dyes compared to <em>Candida</em>. Lipid profiling identified valuable fatty acids, such as palmitic acid and oleic acid, with potential applications in biofuels and other industries. Total Organic Carbon (TOC) analysis revealed a reduction in TOC, indicating degradation and mineralization of the dyes by the yeasts. Metabolic profiling via LC-MS confirmed the degradation, showing the presence of intermediates such as azoles, azolines, isoquinolines, pyridines, and benzopyrans in dye-supplemented cultures. Additionally, pathways related to energy metabolism, amino acid metabolism, drug metabolism (cytochrome P450), degradation of aromatic compounds, and steroid biosynthesis were enriched in the dye-treated cultures. Lipid output in the presence of dyes ranged from 40 % to 90 %. The study thus demonstrates a proof of concept for economically viable lipid production combined with efficient dye removal, presenting a sustainable solution to environmental and industrial challenges.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"212 ","pages":"Article 109521"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating azo dye degradation and lipid accumulation by Candida tropicalis and Pichia kudriavzevii along with insights into underlying metabolomics for treatment of textile effluents\",\"authors\":\"Sadik Dantroliya,&nbsp;Pooja Doshi,&nbsp;Ishan Raval,&nbsp;Chaitanya Joshi,&nbsp;Madhvi Joshi\",\"doi\":\"10.1016/j.bej.2024.109521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Azo compounds, extensively utilized across various industries, contribute to the release of toxic effluents that are detrimental to both the environment and human health. Traditional methods for azo dye removal often result in harmful byproducts or concentrated sludge, complicating disposal efforts. This study explores the potential of two yeast strains, <em>Candida tropicalis</em> and <em>Pichia kudriavzevii</em>, to effectively decolorize azo dyes (TD4, TD5, and TD6) while simultaneously accumulating lipids. The cultures achieved 80–90 % decolorization of the selected dyes during incubation, with <em>Pichia</em> showing higher efficiency across multiple dyes compared to <em>Candida</em>. Lipid profiling identified valuable fatty acids, such as palmitic acid and oleic acid, with potential applications in biofuels and other industries. Total Organic Carbon (TOC) analysis revealed a reduction in TOC, indicating degradation and mineralization of the dyes by the yeasts. Metabolic profiling via LC-MS confirmed the degradation, showing the presence of intermediates such as azoles, azolines, isoquinolines, pyridines, and benzopyrans in dye-supplemented cultures. Additionally, pathways related to energy metabolism, amino acid metabolism, drug metabolism (cytochrome P450), degradation of aromatic compounds, and steroid biosynthesis were enriched in the dye-treated cultures. Lipid output in the presence of dyes ranged from 40 % to 90 %. The study thus demonstrates a proof of concept for economically viable lipid production combined with efficient dye removal, presenting a sustainable solution to environmental and industrial challenges.</div></div>\",\"PeriodicalId\":8766,\"journal\":{\"name\":\"Biochemical Engineering Journal\",\"volume\":\"212 \",\"pages\":\"Article 109521\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369703X24003085\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X24003085","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

各行各业广泛使用的偶氮化合物会释放出对环境和人类健康有害的有毒废水。传统的偶氮染料去除方法往往会产生有害的副产品或浓缩污泥,使处理工作变得更加复杂。本研究探讨了热带念珠菌和 Pichia kudriavzevii 这两种酵母菌株在积累脂质的同时有效脱色偶氮染料(TD4、TD5 和 TD6)的潜力。在培养过程中,这些培养物对所选染料的脱色率达到 80-90%,与念珠菌相比,Pichia 对多种染料的脱色效率更高。脂质分析确定了有价值的脂肪酸,如棕榈酸和油酸,它们在生物燃料和其他行业具有潜在的应用价值。总有机碳 (TOC) 分析显示 TOC 有所减少,表明酵母菌对染料进行了降解和矿化。通过液相色谱-质谱(LC-MS)进行的代谢分析证实了降解,显示在添加染料的培养物中存在唑类、偶氮啉类、异喹啉类、吡啶类和苯并吡喃类等中间产物。此外,与能量代谢、氨基酸代谢、药物代谢(细胞色素 P450)、芳香族化合物降解和类固醇生物合成有关的途径也在染料处理的培养物中得到了丰富。在有染料存在的情况下,脂质产量从 40% 到 90% 不等。因此,该研究证明了经济上可行的脂质生产与高效染料去除相结合的概念,为环境和工业挑战提供了一种可持续的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrating azo dye degradation and lipid accumulation by Candida tropicalis and Pichia kudriavzevii along with insights into underlying metabolomics for treatment of textile effluents
Azo compounds, extensively utilized across various industries, contribute to the release of toxic effluents that are detrimental to both the environment and human health. Traditional methods for azo dye removal often result in harmful byproducts or concentrated sludge, complicating disposal efforts. This study explores the potential of two yeast strains, Candida tropicalis and Pichia kudriavzevii, to effectively decolorize azo dyes (TD4, TD5, and TD6) while simultaneously accumulating lipids. The cultures achieved 80–90 % decolorization of the selected dyes during incubation, with Pichia showing higher efficiency across multiple dyes compared to Candida. Lipid profiling identified valuable fatty acids, such as palmitic acid and oleic acid, with potential applications in biofuels and other industries. Total Organic Carbon (TOC) analysis revealed a reduction in TOC, indicating degradation and mineralization of the dyes by the yeasts. Metabolic profiling via LC-MS confirmed the degradation, showing the presence of intermediates such as azoles, azolines, isoquinolines, pyridines, and benzopyrans in dye-supplemented cultures. Additionally, pathways related to energy metabolism, amino acid metabolism, drug metabolism (cytochrome P450), degradation of aromatic compounds, and steroid biosynthesis were enriched in the dye-treated cultures. Lipid output in the presence of dyes ranged from 40 % to 90 %. The study thus demonstrates a proof of concept for economically viable lipid production combined with efficient dye removal, presenting a sustainable solution to environmental and industrial challenges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemical Engineering Journal
Biochemical Engineering Journal 工程技术-工程:化工
CiteScore
7.10
自引率
5.10%
发文量
380
审稿时长
34 days
期刊介绍: The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology. The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields: Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics Biosensors and Biodevices including biofabrication and novel fuel cell development Bioseparations including scale-up and protein refolding/renaturation Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells Bioreactor Systems including characterization, optimization and scale-up Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis Protein Engineering including enzyme engineering and directed evolution.
期刊最新文献
Editorial Board Harnessing co-expressed L-arabinose and L-ribose isomerases to enhance the biosynthesis of L-ribose A data-driven approach for cell culture medium optimization in vitro analysis of a competitive inhibition model for T7 RNA polymerase biosensors Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1