通过在水热合成的氧化镍纳米粒子中掺入 Fe3+ 提高超级电容器的效率

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER Physica B-condensed Matter Pub Date : 2024-10-09 DOI:10.1016/j.physb.2024.416608
{"title":"通过在水热合成的氧化镍纳米粒子中掺入 Fe3+ 提高超级电容器的效率","authors":"","doi":"10.1016/j.physb.2024.416608","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the physicochemical and electrochemical characteristics of hydrothermally produced, 800°C-annealed pure and Fe<sup>3+</sup> doped (0.02, 0.04, and 0.06 M) NiO nanoparticles(NPs).The face-centred cubic structure of NiO NPs was verified by XRD analysis, and doping resulted in a decrease in crystallite size from 43.92 nm to 19.67 nm.FE-SEM revealed dense and irregularly arranged granular morphologies, while EDAX confirmed successful Fe<sup>3+</sup> incorporation into NiO matrix. UV–Vis DRS showed an increase in bandgap energy from 3.15 eV to 3.71 eV. XPS confirmed the presence of Ni<sup>2+</sup> and Fe<sup>3+</sup> with their elemental compositions. According to BET analysis, Fe<sup>3+</sup> doping increases pore size and specific surface area, which raises specific capacitance.VSM analysis of pure and Fe<sup>3+</sup> doped NiO NPs demonstrated a transition from a weak ferromagnetic to a distinctive ferromagnetic behaviour, which is beneficial for energy storage as well as data storage applications.The electrochemical studies showed that 0.06 M Fe<sup>3+</sup> doped NiO had the maximum specific capacitance of 360.96 F g<sup>−1</sup> at the scan rate of 10 mV s<sup>−1</sup>and EIS Nyquist plots showed enhanced electrical conductivity. These results highlight the possibility of Fe<sup>3+</sup> doped NiO NPs as excellent electrode materials for high-efficiency supercapacitors.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of supercapacitor efficiency by Fe3+ doping in hydrothermally synthesized NiO nanoparticles\",\"authors\":\"\",\"doi\":\"10.1016/j.physb.2024.416608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study examines the physicochemical and electrochemical characteristics of hydrothermally produced, 800°C-annealed pure and Fe<sup>3+</sup> doped (0.02, 0.04, and 0.06 M) NiO nanoparticles(NPs).The face-centred cubic structure of NiO NPs was verified by XRD analysis, and doping resulted in a decrease in crystallite size from 43.92 nm to 19.67 nm.FE-SEM revealed dense and irregularly arranged granular morphologies, while EDAX confirmed successful Fe<sup>3+</sup> incorporation into NiO matrix. UV–Vis DRS showed an increase in bandgap energy from 3.15 eV to 3.71 eV. XPS confirmed the presence of Ni<sup>2+</sup> and Fe<sup>3+</sup> with their elemental compositions. According to BET analysis, Fe<sup>3+</sup> doping increases pore size and specific surface area, which raises specific capacitance.VSM analysis of pure and Fe<sup>3+</sup> doped NiO NPs demonstrated a transition from a weak ferromagnetic to a distinctive ferromagnetic behaviour, which is beneficial for energy storage as well as data storage applications.The electrochemical studies showed that 0.06 M Fe<sup>3+</sup> doped NiO had the maximum specific capacitance of 360.96 F g<sup>−1</sup> at the scan rate of 10 mV s<sup>−1</sup>and EIS Nyquist plots showed enhanced electrical conductivity. These results highlight the possibility of Fe<sup>3+</sup> doped NiO NPs as excellent electrode materials for high-efficiency supercapacitors.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452624009499\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452624009499","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了水热法制备、800°C 退火纯 NiO 纳米粒子(NPs)和掺杂 Fe3+(0.02、0.04 和 0.06 M)NiO 纳米粒子(NPs)的物理化学和电化学特性。XRD 分析验证了 NiO NPs 的面心立方结构,掺杂导致结晶尺寸从 43.92 nm 减小到 19.67 nm。紫外可见 DRS 显示带隙能从 3.15 eV 上升到 3.71 eV。XPS 证实了 Ni2+ 和 Fe3+ 的存在及其元素组成。电化学研究表明,在 10 mV s-1 的扫描速率下,掺杂了 0.06 M Fe3+ 的 NiO 的最大比电容为 360.96 F g-1,EIS Nyquist 图显示电导率有所提高。这些结果表明,掺杂 Fe3+ 的氧化镍氮氧化物可能成为高效超级电容器的优良电极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancement of supercapacitor efficiency by Fe3+ doping in hydrothermally synthesized NiO nanoparticles
This study examines the physicochemical and electrochemical characteristics of hydrothermally produced, 800°C-annealed pure and Fe3+ doped (0.02, 0.04, and 0.06 M) NiO nanoparticles(NPs).The face-centred cubic structure of NiO NPs was verified by XRD analysis, and doping resulted in a decrease in crystallite size from 43.92 nm to 19.67 nm.FE-SEM revealed dense and irregularly arranged granular morphologies, while EDAX confirmed successful Fe3+ incorporation into NiO matrix. UV–Vis DRS showed an increase in bandgap energy from 3.15 eV to 3.71 eV. XPS confirmed the presence of Ni2+ and Fe3+ with their elemental compositions. According to BET analysis, Fe3+ doping increases pore size and specific surface area, which raises specific capacitance.VSM analysis of pure and Fe3+ doped NiO NPs demonstrated a transition from a weak ferromagnetic to a distinctive ferromagnetic behaviour, which is beneficial for energy storage as well as data storage applications.The electrochemical studies showed that 0.06 M Fe3+ doped NiO had the maximum specific capacitance of 360.96 F g−1 at the scan rate of 10 mV s−1and EIS Nyquist plots showed enhanced electrical conductivity. These results highlight the possibility of Fe3+ doped NiO NPs as excellent electrode materials for high-efficiency supercapacitors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
期刊最新文献
Magnetic structure and colossal dielectric properties in Ga3+ substituted Zn2Y hexaferrites by chemical co-precipitation method Investigation of magneto-optoelectronics properties of Mg1-xMnxS alloys for optoelectronics and spintronic applications Persistence luminescence and thermoluminescence of 260 nm UVC irradiated mixed-phase (BaAl2O4 - BaAl12O19) barium aluminate Synthesis, characterization, electrochemical impedance spectroscopy performance and photodegradation of methylene blue: Mesoporous PEG/TiO2 by sol-gel electrospinning Gradient distribution of cations in rhabdophane La0.27Y0.73PO4·nH2O nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1