{"title":"采用响应面方法对废水进行天然杀菌剂辅助超声波消毒","authors":"Arkadeep Mukherjee, Young-Ho Ahn","doi":"10.1016/j.bej.2024.109517","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing prevalence of multidrug-resistant (MDR) bacteria in wastewater poses a significant threat to public health and the environment, necessitating more effective and sustainable disinfection methods. Ozonation and chlorination frequently fall short of eliminating these bacteria and can create toxic byproducts. This study introduces a novel disinfection strategy that combines ultrasonication with tea tree oil to target MDR bacteria in residential wastewater treatment systems, aiming to provide an eco-friendly, efficient, and scalable solution. The method harnesses tea tree oil's natural biocidal properties alongside the physical effects of ultrasonication, particularly acoustic cavitation, to enhance bacterial inactivation. Temperature, biocide dosage, and ultrasonication power were the three main factors that were optimized using response surface methodology. The system achieved a 2.2–2.4 log CFU/mL reduction of total bacteria in secondary effluent within 30 min and complete disinfection of modified effluent inoculated with high-strength MDR bacteria (6-log CFU/mL) in 50 min. Optimal conditions were 698.4 Watt power, 1.234 µl/mL tea tree oil, and 20.64 °C. Nucleic acid release and respiratory chain dehydrogenase inhibition indicated bacterial cell membrane rupture. Regrowth tests showed long-term effectiveness, with no bacterial colonies after three days. Using a natural biocide, the hybrid technique reduces operational costs and time, thus having commercial and environmental benefits. The capacity to remove MDR bacteria makes it an attractive contender for large-scale wastewater treatment.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"212 ","pages":"Article 109517"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural biocide-assisted ultrasonic disinfection of wastewater effluent following a response surface methodology approach\",\"authors\":\"Arkadeep Mukherjee, Young-Ho Ahn\",\"doi\":\"10.1016/j.bej.2024.109517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The increasing prevalence of multidrug-resistant (MDR) bacteria in wastewater poses a significant threat to public health and the environment, necessitating more effective and sustainable disinfection methods. Ozonation and chlorination frequently fall short of eliminating these bacteria and can create toxic byproducts. This study introduces a novel disinfection strategy that combines ultrasonication with tea tree oil to target MDR bacteria in residential wastewater treatment systems, aiming to provide an eco-friendly, efficient, and scalable solution. The method harnesses tea tree oil's natural biocidal properties alongside the physical effects of ultrasonication, particularly acoustic cavitation, to enhance bacterial inactivation. Temperature, biocide dosage, and ultrasonication power were the three main factors that were optimized using response surface methodology. The system achieved a 2.2–2.4 log CFU/mL reduction of total bacteria in secondary effluent within 30 min and complete disinfection of modified effluent inoculated with high-strength MDR bacteria (6-log CFU/mL) in 50 min. Optimal conditions were 698.4 Watt power, 1.234 µl/mL tea tree oil, and 20.64 °C. Nucleic acid release and respiratory chain dehydrogenase inhibition indicated bacterial cell membrane rupture. Regrowth tests showed long-term effectiveness, with no bacterial colonies after three days. Using a natural biocide, the hybrid technique reduces operational costs and time, thus having commercial and environmental benefits. The capacity to remove MDR bacteria makes it an attractive contender for large-scale wastewater treatment.</div></div>\",\"PeriodicalId\":8766,\"journal\":{\"name\":\"Biochemical Engineering Journal\",\"volume\":\"212 \",\"pages\":\"Article 109517\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369703X24003048\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X24003048","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Natural biocide-assisted ultrasonic disinfection of wastewater effluent following a response surface methodology approach
The increasing prevalence of multidrug-resistant (MDR) bacteria in wastewater poses a significant threat to public health and the environment, necessitating more effective and sustainable disinfection methods. Ozonation and chlorination frequently fall short of eliminating these bacteria and can create toxic byproducts. This study introduces a novel disinfection strategy that combines ultrasonication with tea tree oil to target MDR bacteria in residential wastewater treatment systems, aiming to provide an eco-friendly, efficient, and scalable solution. The method harnesses tea tree oil's natural biocidal properties alongside the physical effects of ultrasonication, particularly acoustic cavitation, to enhance bacterial inactivation. Temperature, biocide dosage, and ultrasonication power were the three main factors that were optimized using response surface methodology. The system achieved a 2.2–2.4 log CFU/mL reduction of total bacteria in secondary effluent within 30 min and complete disinfection of modified effluent inoculated with high-strength MDR bacteria (6-log CFU/mL) in 50 min. Optimal conditions were 698.4 Watt power, 1.234 µl/mL tea tree oil, and 20.64 °C. Nucleic acid release and respiratory chain dehydrogenase inhibition indicated bacterial cell membrane rupture. Regrowth tests showed long-term effectiveness, with no bacterial colonies after three days. Using a natural biocide, the hybrid technique reduces operational costs and time, thus having commercial and environmental benefits. The capacity to remove MDR bacteria makes it an attractive contender for large-scale wastewater treatment.
期刊介绍:
The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology.
The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields:
Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics
Biosensors and Biodevices including biofabrication and novel fuel cell development
Bioseparations including scale-up and protein refolding/renaturation
Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells
Bioreactor Systems including characterization, optimization and scale-up
Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization
Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals
Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release
Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites
Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation
Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis
Protein Engineering including enzyme engineering and directed evolution.