Long Chen , Shanqin Ge , Qingzhao Cai , Wei Li , Genxiang Gong , Junhao Wu , Huan Wang , Jinhong Yu , Kazuhito Nishimura , Nan Jiang , Tao Cai
{"title":"基于粘液启发的生物质衍生碳点无溶剂纳米流体与聚电解质网络,实现卓越的绿色润滑","authors":"Long Chen , Shanqin Ge , Qingzhao Cai , Wei Li , Genxiang Gong , Junhao Wu , Huan Wang , Jinhong Yu , Kazuhito Nishimura , Nan Jiang , Tao Cai","doi":"10.1016/j.triboint.2024.110285","DOIUrl":null,"url":null,"abstract":"<div><div>Mechanical friction and wear account for 23 % of global energy, highlighting a need for eco-friendly lubricants. Drawing inspiration from marine organisms' adsorption proteins, we have developed carbon dots-based solvent-free nanofluid. Incorporating hydrophilic polyelectrolytes, the nanofluid forms three-dimensional adsorption-lubrication networks, leveraging carbon dots' strong chelating affinity, synergistically enhancing lubrication. Using the UMT-3 TriboLab and a 3D optical profilometer, we assessed the tribological performance of nanofluid and remarkably reduced the friction coefficient by 47.3 % and wear rate by 90.8 % compared to PEG 200 (Polyethylene Glycol with an average molecular weight of 200). Additionally, the infrared camera detected that nanofluid as water additives, significantly reduce wear and heat generation, decreasing temperature rise by 4.7 times. This biomimetic approach paves the way for green, oil-free, and high-performance water-based lubrication technologies.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"201 ","pages":"Article 110285"},"PeriodicalIF":6.1000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mucus-inspired biomass-derived carbon dots-based solvent-free nanofluid with polyelectrolytes networks toward excellent green lubrication\",\"authors\":\"Long Chen , Shanqin Ge , Qingzhao Cai , Wei Li , Genxiang Gong , Junhao Wu , Huan Wang , Jinhong Yu , Kazuhito Nishimura , Nan Jiang , Tao Cai\",\"doi\":\"10.1016/j.triboint.2024.110285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mechanical friction and wear account for 23 % of global energy, highlighting a need for eco-friendly lubricants. Drawing inspiration from marine organisms' adsorption proteins, we have developed carbon dots-based solvent-free nanofluid. Incorporating hydrophilic polyelectrolytes, the nanofluid forms three-dimensional adsorption-lubrication networks, leveraging carbon dots' strong chelating affinity, synergistically enhancing lubrication. Using the UMT-3 TriboLab and a 3D optical profilometer, we assessed the tribological performance of nanofluid and remarkably reduced the friction coefficient by 47.3 % and wear rate by 90.8 % compared to PEG 200 (Polyethylene Glycol with an average molecular weight of 200). Additionally, the infrared camera detected that nanofluid as water additives, significantly reduce wear and heat generation, decreasing temperature rise by 4.7 times. This biomimetic approach paves the way for green, oil-free, and high-performance water-based lubrication technologies.</div></div>\",\"PeriodicalId\":23238,\"journal\":{\"name\":\"Tribology International\",\"volume\":\"201 \",\"pages\":\"Article 110285\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301679X24010375\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology International","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301679X24010375","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Mucus-inspired biomass-derived carbon dots-based solvent-free nanofluid with polyelectrolytes networks toward excellent green lubrication
Mechanical friction and wear account for 23 % of global energy, highlighting a need for eco-friendly lubricants. Drawing inspiration from marine organisms' adsorption proteins, we have developed carbon dots-based solvent-free nanofluid. Incorporating hydrophilic polyelectrolytes, the nanofluid forms three-dimensional adsorption-lubrication networks, leveraging carbon dots' strong chelating affinity, synergistically enhancing lubrication. Using the UMT-3 TriboLab and a 3D optical profilometer, we assessed the tribological performance of nanofluid and remarkably reduced the friction coefficient by 47.3 % and wear rate by 90.8 % compared to PEG 200 (Polyethylene Glycol with an average molecular weight of 200). Additionally, the infrared camera detected that nanofluid as water additives, significantly reduce wear and heat generation, decreasing temperature rise by 4.7 times. This biomimetic approach paves the way for green, oil-free, and high-performance water-based lubrication technologies.
期刊介绍:
Tribology is the science of rubbing surfaces and contributes to every facet of our everyday life, from live cell friction to engine lubrication and seismology. As such tribology is truly multidisciplinary and this extraordinary breadth of scientific interest is reflected in the scope of Tribology International.
Tribology International seeks to publish original research papers of the highest scientific quality to provide an archival resource for scientists from all backgrounds. Written contributions are invited reporting experimental and modelling studies both in established areas of tribology and emerging fields. Scientific topics include the physics or chemistry of tribo-surfaces, bio-tribology, surface engineering and materials, contact mechanics, nano-tribology, lubricants and hydrodynamic lubrication.