Ana Mantilla-Dulcey , Paul Goyes-Peñafiel , Rosana Báez-Rodríguez , Sait Khurama
{"title":"通过先验地质转移学习利用不平衡数据绘制斑岩型矿产远景图","authors":"Ana Mantilla-Dulcey , Paul Goyes-Peñafiel , Rosana Báez-Rodríguez , Sait Khurama","doi":"10.1016/j.gr.2024.09.004","DOIUrl":null,"url":null,"abstract":"<div><div>Mineral prospectivity mapping is crucial for identifying areas with economically valuable minerals. Therefore, several methods based on machine learning have been applied to predict the likelihood of mineral occurrences, especially deep learning (DL), which provides a flexible and precise approach to the use of continuous data. It allows the approximation of predictive variables with probability values related to new ore targets. However, in the early stages of mineral exploration, DL-based methods face a challenge related to class and sampling imbalance due to scarce mineral deposits, resulting in a lack of enough samples to train, limiting the model’s predictive ability. This work proposed a detailed and systematic framework to address imbalanced data issues with prior geological transfer learning and a weighted loss function. We exploited the abundant pixel information of input variables to develop a pretext geological classification and a feature data extraction task as an initializer for the trainable variables of the neural network. The proposed workflow was tested in a porphyry-rich Yukon (Canada) region and overperformed other state-of-the-art classification algorithms such as random forest, support vector machines, and logistic regression. Moreover, our results were contrasted against different geological reports, where our mineral prospectivity map was coherent with regional and local potential assessments of porphyry-type mineral occurrences. The quantitative metrics with a validation dataset suggested that the proposed method can effectively predict mineral prospective areas in different imbalanced data scenarios.</div></div>","PeriodicalId":12761,"journal":{"name":"Gondwana Research","volume":"136 ","pages":"Pages 236-250"},"PeriodicalIF":7.2000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Porphyry-type mineral prospectivity mapping with imbalanced data via prior geological transfer learning\",\"authors\":\"Ana Mantilla-Dulcey , Paul Goyes-Peñafiel , Rosana Báez-Rodríguez , Sait Khurama\",\"doi\":\"10.1016/j.gr.2024.09.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mineral prospectivity mapping is crucial for identifying areas with economically valuable minerals. Therefore, several methods based on machine learning have been applied to predict the likelihood of mineral occurrences, especially deep learning (DL), which provides a flexible and precise approach to the use of continuous data. It allows the approximation of predictive variables with probability values related to new ore targets. However, in the early stages of mineral exploration, DL-based methods face a challenge related to class and sampling imbalance due to scarce mineral deposits, resulting in a lack of enough samples to train, limiting the model’s predictive ability. This work proposed a detailed and systematic framework to address imbalanced data issues with prior geological transfer learning and a weighted loss function. We exploited the abundant pixel information of input variables to develop a pretext geological classification and a feature data extraction task as an initializer for the trainable variables of the neural network. The proposed workflow was tested in a porphyry-rich Yukon (Canada) region and overperformed other state-of-the-art classification algorithms such as random forest, support vector machines, and logistic regression. Moreover, our results were contrasted against different geological reports, where our mineral prospectivity map was coherent with regional and local potential assessments of porphyry-type mineral occurrences. The quantitative metrics with a validation dataset suggested that the proposed method can effectively predict mineral prospective areas in different imbalanced data scenarios.</div></div>\",\"PeriodicalId\":12761,\"journal\":{\"name\":\"Gondwana Research\",\"volume\":\"136 \",\"pages\":\"Pages 236-250\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gondwana Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1342937X24002727\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gondwana Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1342937X24002727","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Porphyry-type mineral prospectivity mapping with imbalanced data via prior geological transfer learning
Mineral prospectivity mapping is crucial for identifying areas with economically valuable minerals. Therefore, several methods based on machine learning have been applied to predict the likelihood of mineral occurrences, especially deep learning (DL), which provides a flexible and precise approach to the use of continuous data. It allows the approximation of predictive variables with probability values related to new ore targets. However, in the early stages of mineral exploration, DL-based methods face a challenge related to class and sampling imbalance due to scarce mineral deposits, resulting in a lack of enough samples to train, limiting the model’s predictive ability. This work proposed a detailed and systematic framework to address imbalanced data issues with prior geological transfer learning and a weighted loss function. We exploited the abundant pixel information of input variables to develop a pretext geological classification and a feature data extraction task as an initializer for the trainable variables of the neural network. The proposed workflow was tested in a porphyry-rich Yukon (Canada) region and overperformed other state-of-the-art classification algorithms such as random forest, support vector machines, and logistic regression. Moreover, our results were contrasted against different geological reports, where our mineral prospectivity map was coherent with regional and local potential assessments of porphyry-type mineral occurrences. The quantitative metrics with a validation dataset suggested that the proposed method can effectively predict mineral prospective areas in different imbalanced data scenarios.
期刊介绍:
Gondwana Research (GR) is an International Journal aimed to promote high quality research publications on all topics related to solid Earth, particularly with reference to the origin and evolution of continents, continental assemblies and their resources. GR is an "all earth science" journal with no restrictions on geological time, terrane or theme and covers a wide spectrum of topics in geosciences such as geology, geomorphology, palaeontology, structure, petrology, geochemistry, stable isotopes, geochronology, economic geology, exploration geology, engineering geology, geophysics, and environmental geology among other themes, and provides an appropriate forum to integrate studies from different disciplines and different terrains. In addition to regular articles and thematic issues, the journal invites high profile state-of-the-art reviews on thrust area topics for its column, ''GR FOCUS''. Focus articles include short biographies and photographs of the authors. Short articles (within ten printed pages) for rapid publication reporting important discoveries or innovative models of global interest will be considered under the category ''GR LETTERS''.