P. Sujin , Ajith J. Kings , L.R. Monisha Miriam , Jain B. Marshel
{"title":"利用先进的计算技术和新型双功能液化催化剂从混合非食用油中优化生物柴油生产:集成电路发动机兼容性评估","authors":"P. Sujin , Ajith J. Kings , L.R. Monisha Miriam , Jain B. Marshel","doi":"10.1016/j.biombioe.2024.107412","DOIUrl":null,"url":null,"abstract":"<div><div>A synergistic combination of oils from <em>Ceiba pentandra, Mahua longifolia, and Azadirachta indica</em> can be harnessed to produce biodiesel, effectively mitigating the seasonal constraints associated with relying on a single feedstock. A novel bifunctional liquid catalyst sulfonate ester was prepared and characterized by various spectroscopic techniques to confirm its capability in efficient biodiesel conversion. Using a 4 % bifunctional catalyst, a 98 % biodiesel yield was achieved, with optimization of methanol/oil ratio, temperature, and stirring speed through RSM, and validation against ANN and ANFIS predictions. The biodiesel properties met EN and ASTM standards, ensuring compatibility. Engine tests under full load conditions examined various blends (B0-B100) and compression ratios (16–20). At a compression ratio of 19, the B20 biodiesel blend outperformed others by achieving the highest brake thermal efficiency of 30.42 % and the lowest brake-specific fuel consumption, measuring just 0.219 kg/kWh. In addition to these efficiency gains, the use of higher biodiesel blends led to a substantial decrease in exhaust emissions relative to pure diesel. The findings from this research advocate for the adoption of biodiesel from mixed non-edible oils as a green and sustainable replacement for conventional diesel fuel.</div></div>","PeriodicalId":253,"journal":{"name":"Biomass & Bioenergy","volume":"190 ","pages":"Article 107412"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized biodiesel production from mixed non-edible oils using advanced computational techniques and a novel bifunctional liquified catalyst: Compatibility assessment in IC engines\",\"authors\":\"P. Sujin , Ajith J. Kings , L.R. Monisha Miriam , Jain B. Marshel\",\"doi\":\"10.1016/j.biombioe.2024.107412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A synergistic combination of oils from <em>Ceiba pentandra, Mahua longifolia, and Azadirachta indica</em> can be harnessed to produce biodiesel, effectively mitigating the seasonal constraints associated with relying on a single feedstock. A novel bifunctional liquid catalyst sulfonate ester was prepared and characterized by various spectroscopic techniques to confirm its capability in efficient biodiesel conversion. Using a 4 % bifunctional catalyst, a 98 % biodiesel yield was achieved, with optimization of methanol/oil ratio, temperature, and stirring speed through RSM, and validation against ANN and ANFIS predictions. The biodiesel properties met EN and ASTM standards, ensuring compatibility. Engine tests under full load conditions examined various blends (B0-B100) and compression ratios (16–20). At a compression ratio of 19, the B20 biodiesel blend outperformed others by achieving the highest brake thermal efficiency of 30.42 % and the lowest brake-specific fuel consumption, measuring just 0.219 kg/kWh. In addition to these efficiency gains, the use of higher biodiesel blends led to a substantial decrease in exhaust emissions relative to pure diesel. The findings from this research advocate for the adoption of biodiesel from mixed non-edible oils as a green and sustainable replacement for conventional diesel fuel.</div></div>\",\"PeriodicalId\":253,\"journal\":{\"name\":\"Biomass & Bioenergy\",\"volume\":\"190 \",\"pages\":\"Article 107412\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomass & Bioenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0961953424003659\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass & Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0961953424003659","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Optimized biodiesel production from mixed non-edible oils using advanced computational techniques and a novel bifunctional liquified catalyst: Compatibility assessment in IC engines
A synergistic combination of oils from Ceiba pentandra, Mahua longifolia, and Azadirachta indica can be harnessed to produce biodiesel, effectively mitigating the seasonal constraints associated with relying on a single feedstock. A novel bifunctional liquid catalyst sulfonate ester was prepared and characterized by various spectroscopic techniques to confirm its capability in efficient biodiesel conversion. Using a 4 % bifunctional catalyst, a 98 % biodiesel yield was achieved, with optimization of methanol/oil ratio, temperature, and stirring speed through RSM, and validation against ANN and ANFIS predictions. The biodiesel properties met EN and ASTM standards, ensuring compatibility. Engine tests under full load conditions examined various blends (B0-B100) and compression ratios (16–20). At a compression ratio of 19, the B20 biodiesel blend outperformed others by achieving the highest brake thermal efficiency of 30.42 % and the lowest brake-specific fuel consumption, measuring just 0.219 kg/kWh. In addition to these efficiency gains, the use of higher biodiesel blends led to a substantial decrease in exhaust emissions relative to pure diesel. The findings from this research advocate for the adoption of biodiesel from mixed non-edible oils as a green and sustainable replacement for conventional diesel fuel.
期刊介绍:
Biomass & Bioenergy is an international journal publishing original research papers and short communications, review articles and case studies on biological resources, chemical and biological processes, and biomass products for new renewable sources of energy and materials.
The scope of the journal extends to the environmental, management and economic aspects of biomass and bioenergy.
Key areas covered by the journal:
• Biomass: sources, energy crop production processes, genetic improvements, composition. Please note that research on these biomass subjects must be linked directly to bioenergy generation.
• Biological Residues: residues/rests from agricultural production, forestry and plantations (palm, sugar etc), processing industries, and municipal sources (MSW). Papers on the use of biomass residues through innovative processes/technological novelty and/or consideration of feedstock/system sustainability (or unsustainability) are welcomed. However waste treatment processes and pollution control or mitigation which are only tangentially related to bioenergy are not in the scope of the journal, as they are more suited to publications in the environmental arena. Papers that describe conventional waste streams (ie well described in existing literature) that do not empirically address ''new'' added value from the process are not suitable for submission to the journal.
• Bioenergy Processes: fermentations, thermochemical conversions, liquid and gaseous fuels, and petrochemical substitutes
• Bioenergy Utilization: direct combustion, gasification, electricity production, chemical processes, and by-product remediation
• Biomass and the Environment: carbon cycle, the net energy efficiency of bioenergy systems, assessment of sustainability, and biodiversity issues.