{"title":"MoS2-MoTe2 和 MoS2-MoSe2 侧异质结构的热电性能:外磁场、横向电场和纳米带宽度的影响","authors":"Mona Abdi , Bandar Astinchap , Farhad Khoeini","doi":"10.1016/j.physe.2024.116119","DOIUrl":null,"url":null,"abstract":"<div><div>Extensive research is underway to improve the thermoelectric properties of materials by enhancing the figure of merit (ZT). In this study, we are investigating the thermoelectric properties of MoS<sub>2</sub>/MoTe<sub>2</sub> and MoS<sub>2</sub>/MoSe<sub>2</sub> lateral heterostructures (LH-S) under the influence of external magnetic fields (EMF) and transverse electric fields (TEF). We employ the non-equilibrium Green's function (N-EGF) and tight-binding (TB) methods for our analysis. The results obtained indicate that the ZT for MoS<sub>2</sub>-MoTe<sub>2</sub> and MoS<sub>2</sub>-MoSe<sub>2</sub> LH-S enhanced with an increase in the TEF. The ZT of MoS<sub>2</sub>-MoSe<sub>2</sub> LH-S increases near room temperature, while the ZT of MoS<sub>2</sub>-MoTe<sub>2</sub> LH-S increases with an increase in EMF across the entire temperature range. Additionally, the ZT for MoS<sub>2</sub>-MoSe<sub>2</sub> LH-S increases with an increase in the nanoribbon width, whereas for MoS<sub>2</sub>-MoTe<sub>2</sub> LH-S, it decreases. The results reveal that the semiconductor type of MoS<sub>2</sub>-MoSe<sub>2</sub> and MoS<sub>2</sub>-MoTe<sub>2</sub> LH-S changes from n-type to p-type when subjected to EMF and transverse TEF. The examination of the temperature dependence of ZT in the presence of TEF and EMF for MoS<sub>2</sub>-MoTe<sub>2</sub> and MoS<sub>2</sub>-MoSe<sub>2</sub> LH-S indicates that these structures are highly promising candidates for use in electrical devices.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"165 ","pages":"Article 116119"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermoelectric properties of MoS2-MoTe2 and MoS2-MoSe2lateral hetero-structures: The effects of external magnetic, transverse electric fields and nanoribbon width\",\"authors\":\"Mona Abdi , Bandar Astinchap , Farhad Khoeini\",\"doi\":\"10.1016/j.physe.2024.116119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Extensive research is underway to improve the thermoelectric properties of materials by enhancing the figure of merit (ZT). In this study, we are investigating the thermoelectric properties of MoS<sub>2</sub>/MoTe<sub>2</sub> and MoS<sub>2</sub>/MoSe<sub>2</sub> lateral heterostructures (LH-S) under the influence of external magnetic fields (EMF) and transverse electric fields (TEF). We employ the non-equilibrium Green's function (N-EGF) and tight-binding (TB) methods for our analysis. The results obtained indicate that the ZT for MoS<sub>2</sub>-MoTe<sub>2</sub> and MoS<sub>2</sub>-MoSe<sub>2</sub> LH-S enhanced with an increase in the TEF. The ZT of MoS<sub>2</sub>-MoSe<sub>2</sub> LH-S increases near room temperature, while the ZT of MoS<sub>2</sub>-MoTe<sub>2</sub> LH-S increases with an increase in EMF across the entire temperature range. Additionally, the ZT for MoS<sub>2</sub>-MoSe<sub>2</sub> LH-S increases with an increase in the nanoribbon width, whereas for MoS<sub>2</sub>-MoTe<sub>2</sub> LH-S, it decreases. The results reveal that the semiconductor type of MoS<sub>2</sub>-MoSe<sub>2</sub> and MoS<sub>2</sub>-MoTe<sub>2</sub> LH-S changes from n-type to p-type when subjected to EMF and transverse TEF. The examination of the temperature dependence of ZT in the presence of TEF and EMF for MoS<sub>2</sub>-MoTe<sub>2</sub> and MoS<sub>2</sub>-MoSe<sub>2</sub> LH-S indicates that these structures are highly promising candidates for use in electrical devices.</div></div>\",\"PeriodicalId\":20181,\"journal\":{\"name\":\"Physica E-low-dimensional Systems & Nanostructures\",\"volume\":\"165 \",\"pages\":\"Article 116119\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica E-low-dimensional Systems & Nanostructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386947724002236\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947724002236","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Thermoelectric properties of MoS2-MoTe2 and MoS2-MoSe2lateral hetero-structures: The effects of external magnetic, transverse electric fields and nanoribbon width
Extensive research is underway to improve the thermoelectric properties of materials by enhancing the figure of merit (ZT). In this study, we are investigating the thermoelectric properties of MoS2/MoTe2 and MoS2/MoSe2 lateral heterostructures (LH-S) under the influence of external magnetic fields (EMF) and transverse electric fields (TEF). We employ the non-equilibrium Green's function (N-EGF) and tight-binding (TB) methods for our analysis. The results obtained indicate that the ZT for MoS2-MoTe2 and MoS2-MoSe2 LH-S enhanced with an increase in the TEF. The ZT of MoS2-MoSe2 LH-S increases near room temperature, while the ZT of MoS2-MoTe2 LH-S increases with an increase in EMF across the entire temperature range. Additionally, the ZT for MoS2-MoSe2 LH-S increases with an increase in the nanoribbon width, whereas for MoS2-MoTe2 LH-S, it decreases. The results reveal that the semiconductor type of MoS2-MoSe2 and MoS2-MoTe2 LH-S changes from n-type to p-type when subjected to EMF and transverse TEF. The examination of the temperature dependence of ZT in the presence of TEF and EMF for MoS2-MoTe2 and MoS2-MoSe2 LH-S indicates that these structures are highly promising candidates for use in electrical devices.
期刊介绍:
Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals.
Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena.
Keywords:
• topological insulators/superconductors, majorana fermions, Wyel semimetals;
• quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems;
• layered superconductivity, low dimensional systems with superconducting proximity effect;
• 2D materials such as transition metal dichalcogenides;
• oxide heterostructures including ZnO, SrTiO3 etc;
• carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.)
• quantum wells and superlattices;
• quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect;
• optical- and phonons-related phenomena;
• magnetic-semiconductor structures;
• charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling;
• ultra-fast nonlinear optical phenomena;
• novel devices and applications (such as high performance sensor, solar cell, etc);
• novel growth and fabrication techniques for nanostructures