Zhigang Liu , Youwen Yang , Yunan Chen , Lei Yi , Liejin Guo , Yun Chao , Huiming Chen
{"title":"生物质超临界水气化催化制氢综述","authors":"Zhigang Liu , Youwen Yang , Yunan Chen , Lei Yi , Liejin Guo , Yun Chao , Huiming Chen","doi":"10.1016/j.biombioe.2024.107422","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, biomass gasification process has gained lots of attention because of sustainable energy sources utilization. Being renewable energy source, biomass can serve as a viable replacement for fossil fuels. The process gasification is the conversion of organic substance via thermochemical process where syngas is produced along with the solid product termed as char. Such process is also well known for the generation of heat and power and synthesize the second-generation biofuels and hydrogen production. Unfortunately, tar formation in gasifiers during biomass gasification remains a main problem to commercialization. In the current review we focus at recent advancements in catalytic biomass gasification about supercritical water catalytic gasification and discuss on gasification process, parametric impact, biomass-pretreatment and catalytic deactivate mechanism in order to overcome the challenges and improve the catalytic yield. Future direction and critical prospective of catalytic biomass gasification are also discussed in this review.</div></div>","PeriodicalId":253,"journal":{"name":"Biomass & Bioenergy","volume":"190 ","pages":"Article 107422"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review on catalytic hydrogen production from supercritical water gasification of biomass\",\"authors\":\"Zhigang Liu , Youwen Yang , Yunan Chen , Lei Yi , Liejin Guo , Yun Chao , Huiming Chen\",\"doi\":\"10.1016/j.biombioe.2024.107422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recently, biomass gasification process has gained lots of attention because of sustainable energy sources utilization. Being renewable energy source, biomass can serve as a viable replacement for fossil fuels. The process gasification is the conversion of organic substance via thermochemical process where syngas is produced along with the solid product termed as char. Such process is also well known for the generation of heat and power and synthesize the second-generation biofuels and hydrogen production. Unfortunately, tar formation in gasifiers during biomass gasification remains a main problem to commercialization. In the current review we focus at recent advancements in catalytic biomass gasification about supercritical water catalytic gasification and discuss on gasification process, parametric impact, biomass-pretreatment and catalytic deactivate mechanism in order to overcome the challenges and improve the catalytic yield. Future direction and critical prospective of catalytic biomass gasification are also discussed in this review.</div></div>\",\"PeriodicalId\":253,\"journal\":{\"name\":\"Biomass & Bioenergy\",\"volume\":\"190 \",\"pages\":\"Article 107422\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomass & Bioenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0961953424003751\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass & Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0961953424003751","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
A review on catalytic hydrogen production from supercritical water gasification of biomass
Recently, biomass gasification process has gained lots of attention because of sustainable energy sources utilization. Being renewable energy source, biomass can serve as a viable replacement for fossil fuels. The process gasification is the conversion of organic substance via thermochemical process where syngas is produced along with the solid product termed as char. Such process is also well known for the generation of heat and power and synthesize the second-generation biofuels and hydrogen production. Unfortunately, tar formation in gasifiers during biomass gasification remains a main problem to commercialization. In the current review we focus at recent advancements in catalytic biomass gasification about supercritical water catalytic gasification and discuss on gasification process, parametric impact, biomass-pretreatment and catalytic deactivate mechanism in order to overcome the challenges and improve the catalytic yield. Future direction and critical prospective of catalytic biomass gasification are also discussed in this review.
期刊介绍:
Biomass & Bioenergy is an international journal publishing original research papers and short communications, review articles and case studies on biological resources, chemical and biological processes, and biomass products for new renewable sources of energy and materials.
The scope of the journal extends to the environmental, management and economic aspects of biomass and bioenergy.
Key areas covered by the journal:
• Biomass: sources, energy crop production processes, genetic improvements, composition. Please note that research on these biomass subjects must be linked directly to bioenergy generation.
• Biological Residues: residues/rests from agricultural production, forestry and plantations (palm, sugar etc), processing industries, and municipal sources (MSW). Papers on the use of biomass residues through innovative processes/technological novelty and/or consideration of feedstock/system sustainability (or unsustainability) are welcomed. However waste treatment processes and pollution control or mitigation which are only tangentially related to bioenergy are not in the scope of the journal, as they are more suited to publications in the environmental arena. Papers that describe conventional waste streams (ie well described in existing literature) that do not empirically address ''new'' added value from the process are not suitable for submission to the journal.
• Bioenergy Processes: fermentations, thermochemical conversions, liquid and gaseous fuels, and petrochemical substitutes
• Bioenergy Utilization: direct combustion, gasification, electricity production, chemical processes, and by-product remediation
• Biomass and the Environment: carbon cycle, the net energy efficiency of bioenergy systems, assessment of sustainability, and biodiversity issues.