空间极值依赖性时间演化的时空模型

IF 2.1 2区 数学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Spatial Statistics Pub Date : 2024-09-30 DOI:10.1016/j.spasta.2024.100860
Véronique Maume-Deschamps , Pierre Ribereau , Manal Zeidan
{"title":"空间极值依赖性时间演化的时空模型","authors":"Véronique Maume-Deschamps ,&nbsp;Pierre Ribereau ,&nbsp;Manal Zeidan","doi":"10.1016/j.spasta.2024.100860","DOIUrl":null,"url":null,"abstract":"<div><div>Few spatio-temporal models allow temporal non-stationarity. When modeling environmental data recorded over the last decades of the 20th century until now, it seems not reasonable to assume temporal stationarity, since it would not capture climate change effects. In this paper, we propose a space–time max-stable model for modeling some temporal non-stationarity of the spatial extremal dependence. Our model consists of a mixture of max-stable spatial processes, with a rate of mixing depending on time. We use maximum composite likelihood for estimation, model selection, and a non-stationarity test. The assessment of its performance is done through wide simulation experiments. The proposed model is used to investigate how the rainfall in the south of France evolves with time. The results demonstrate that the spatial extremal dependence is significantly non-stationary over time, with a decrease in the strength of dependence.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A spatio-temporal model for temporal evolution of spatial extremal dependence\",\"authors\":\"Véronique Maume-Deschamps ,&nbsp;Pierre Ribereau ,&nbsp;Manal Zeidan\",\"doi\":\"10.1016/j.spasta.2024.100860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Few spatio-temporal models allow temporal non-stationarity. When modeling environmental data recorded over the last decades of the 20th century until now, it seems not reasonable to assume temporal stationarity, since it would not capture climate change effects. In this paper, we propose a space–time max-stable model for modeling some temporal non-stationarity of the spatial extremal dependence. Our model consists of a mixture of max-stable spatial processes, with a rate of mixing depending on time. We use maximum composite likelihood for estimation, model selection, and a non-stationarity test. The assessment of its performance is done through wide simulation experiments. The proposed model is used to investigate how the rainfall in the south of France evolves with time. The results demonstrate that the spatial extremal dependence is significantly non-stationary over time, with a decrease in the strength of dependence.</div></div>\",\"PeriodicalId\":48771,\"journal\":{\"name\":\"Spatial Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211675324000514\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675324000514","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

很少有时空模型允许时间非平稳性。在对 20 世纪最后几十年至今记录的环境数据建模时,假设时间静止似乎是不合理的,因为这无法捕捉到气候变化的影响。在本文中,我们提出了一种时空最大稳定模型,用于模拟空间极值依赖性的某些时间非平稳性。我们的模型由最大稳定空间过程的混合物组成,混合率取决于时间。我们使用最大复合似然法进行估计、模型选择和非平稳性检验。通过广泛的模拟实验对其性能进行了评估。提出的模型被用于研究法国南部降雨量如何随时间演变。结果表明,随着时间的推移,空间极值依赖性明显非平稳,依赖性强度下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A spatio-temporal model for temporal evolution of spatial extremal dependence
Few spatio-temporal models allow temporal non-stationarity. When modeling environmental data recorded over the last decades of the 20th century until now, it seems not reasonable to assume temporal stationarity, since it would not capture climate change effects. In this paper, we propose a space–time max-stable model for modeling some temporal non-stationarity of the spatial extremal dependence. Our model consists of a mixture of max-stable spatial processes, with a rate of mixing depending on time. We use maximum composite likelihood for estimation, model selection, and a non-stationarity test. The assessment of its performance is done through wide simulation experiments. The proposed model is used to investigate how the rainfall in the south of France evolves with time. The results demonstrate that the spatial extremal dependence is significantly non-stationary over time, with a decrease in the strength of dependence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Spatial Statistics
Spatial Statistics GEOSCIENCES, MULTIDISCIPLINARY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.00
自引率
21.70%
发文量
89
审稿时长
55 days
期刊介绍: Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication. Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.
期刊最新文献
Uncovering hidden alignments in two-dimensional point fields Spatio-temporal data fusion for the analysis of in situ and remote sensing data using the INLA-SPDE approach Exploiting nearest-neighbour maps for estimating the variance of sample mean in equal-probability systematic sampling of spatial populations Variable selection of nonparametric spatial autoregressive models via deep learning Estimation and inference of multi-effect generalized geographically and temporally weighted regression models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1