{"title":"气候和人口变化情景下按原因、年龄和性别分列的非最佳温度所致死亡率和发病率负担:日本全国范围的模型研究","authors":"","doi":"10.1016/j.lanwpc.2024.101214","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Future temperature effects on mortality and morbidity may differ. However, studies comparing projected future temperature-attributable mortality and morbidity in the same setting are limited. Moreover, these studies did not consider future population change, human adaptation, and the variations in subpopulation susceptibility. Thus, we simultaneously projected the temperature-related mortality and morbidity by cause, age, and sex under population change, and human adaptation scenarios in Japan, a super-ageing society.</div></div><div><h3>Methods</h3><div>We used daily mean temperatures, mortality, and emergency ambulance dispatch (a sensitive indicator for morbidity) in 47 prefectures of Japan from 2015 to 2019 as the reference for future projections. Future mortality and morbidity were generated at prefecture level using four shared socioeconomic pathway (SSP) scenarios considering population changes. We calculated future temperature-related mortality and morbidity by combining baseline values with future temperatures and existing temperature risk functions by cause (all-cause, circulatory, respiratory), age (<65 years, ≥65 years), and sex under various climate change and SSP scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). Full human adaptation was simulated based on empirical evidence using a fixed percentile of minimum mortality or morbidity temperature (MMT), while no adaptation was simulated with a fixed absolute MMT.</div></div><div><h3>Findings</h3><div>A future temporal decline in mortality burden attributable to non-optimal temperatures was observed, driven by greater cold-related deaths than heat-related deaths. In contrast, temperature-related morbidity increased over time, which was primarily driven by heat. In the 2050s and 2090s, under a moderate scenario, there are 83.69 (95% empirical confidence interval [eCI] 38.32–124.97) and 77.31 (95% eCI 36.84–114.47) all-cause deaths per 100,000 population, while there are 345.07 (95% eCI 258.31–438.66) and 379.62 (95% eCI 271.45–509.05) all-cause morbidity associated with non-optimal temperatures. These trends were largely consistent across causes, age, and sex groups. Future heat-attributable health burden is projected to increase substantially, with spatiotemporal variations and is particularly pronounced among individuals ≥65 y and males. Full human adaptation could yield a decreasing temperature-attributable mortality and morbidity in line with a decreasing population.</div></div><div><h3>Interpretation</h3><div>Our findings could support the development of targeted mitigation and adaptation strategies to address future heat-related impacts effectively. This includes improved healthcare allocations for ambulance dispatch and hospital preventive measures during heat periods, particularly custom-tailored to address specific health outcomes and vulnerable subpopulations.</div></div><div><h3>Funding</h3><div><span>Japan Science and Technology Agency</span> and <span>Environmental Restoration and Conservation Agency</span> and <span>Ministry of the Environment of Japan</span>.</div></div>","PeriodicalId":22792,"journal":{"name":"The Lancet Regional Health: Western Pacific","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-optimal temperature-attributable mortality and morbidity burden by cause, age and sex under climate and population change scenarios: a nationwide modelling study in Japan\",\"authors\":\"\",\"doi\":\"10.1016/j.lanwpc.2024.101214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Future temperature effects on mortality and morbidity may differ. However, studies comparing projected future temperature-attributable mortality and morbidity in the same setting are limited. Moreover, these studies did not consider future population change, human adaptation, and the variations in subpopulation susceptibility. Thus, we simultaneously projected the temperature-related mortality and morbidity by cause, age, and sex under population change, and human adaptation scenarios in Japan, a super-ageing society.</div></div><div><h3>Methods</h3><div>We used daily mean temperatures, mortality, and emergency ambulance dispatch (a sensitive indicator for morbidity) in 47 prefectures of Japan from 2015 to 2019 as the reference for future projections. Future mortality and morbidity were generated at prefecture level using four shared socioeconomic pathway (SSP) scenarios considering population changes. We calculated future temperature-related mortality and morbidity by combining baseline values with future temperatures and existing temperature risk functions by cause (all-cause, circulatory, respiratory), age (<65 years, ≥65 years), and sex under various climate change and SSP scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). Full human adaptation was simulated based on empirical evidence using a fixed percentile of minimum mortality or morbidity temperature (MMT), while no adaptation was simulated with a fixed absolute MMT.</div></div><div><h3>Findings</h3><div>A future temporal decline in mortality burden attributable to non-optimal temperatures was observed, driven by greater cold-related deaths than heat-related deaths. In contrast, temperature-related morbidity increased over time, which was primarily driven by heat. In the 2050s and 2090s, under a moderate scenario, there are 83.69 (95% empirical confidence interval [eCI] 38.32–124.97) and 77.31 (95% eCI 36.84–114.47) all-cause deaths per 100,000 population, while there are 345.07 (95% eCI 258.31–438.66) and 379.62 (95% eCI 271.45–509.05) all-cause morbidity associated with non-optimal temperatures. These trends were largely consistent across causes, age, and sex groups. Future heat-attributable health burden is projected to increase substantially, with spatiotemporal variations and is particularly pronounced among individuals ≥65 y and males. Full human adaptation could yield a decreasing temperature-attributable mortality and morbidity in line with a decreasing population.</div></div><div><h3>Interpretation</h3><div>Our findings could support the development of targeted mitigation and adaptation strategies to address future heat-related impacts effectively. This includes improved healthcare allocations for ambulance dispatch and hospital preventive measures during heat periods, particularly custom-tailored to address specific health outcomes and vulnerable subpopulations.</div></div><div><h3>Funding</h3><div><span>Japan Science and Technology Agency</span> and <span>Environmental Restoration and Conservation Agency</span> and <span>Ministry of the Environment of Japan</span>.</div></div>\",\"PeriodicalId\":22792,\"journal\":{\"name\":\"The Lancet Regional Health: Western Pacific\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Lancet Regional Health: Western Pacific\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666606524002086\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Lancet Regional Health: Western Pacific","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666606524002086","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Non-optimal temperature-attributable mortality and morbidity burden by cause, age and sex under climate and population change scenarios: a nationwide modelling study in Japan
Background
Future temperature effects on mortality and morbidity may differ. However, studies comparing projected future temperature-attributable mortality and morbidity in the same setting are limited. Moreover, these studies did not consider future population change, human adaptation, and the variations in subpopulation susceptibility. Thus, we simultaneously projected the temperature-related mortality and morbidity by cause, age, and sex under population change, and human adaptation scenarios in Japan, a super-ageing society.
Methods
We used daily mean temperatures, mortality, and emergency ambulance dispatch (a sensitive indicator for morbidity) in 47 prefectures of Japan from 2015 to 2019 as the reference for future projections. Future mortality and morbidity were generated at prefecture level using four shared socioeconomic pathway (SSP) scenarios considering population changes. We calculated future temperature-related mortality and morbidity by combining baseline values with future temperatures and existing temperature risk functions by cause (all-cause, circulatory, respiratory), age (<65 years, ≥65 years), and sex under various climate change and SSP scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). Full human adaptation was simulated based on empirical evidence using a fixed percentile of minimum mortality or morbidity temperature (MMT), while no adaptation was simulated with a fixed absolute MMT.
Findings
A future temporal decline in mortality burden attributable to non-optimal temperatures was observed, driven by greater cold-related deaths than heat-related deaths. In contrast, temperature-related morbidity increased over time, which was primarily driven by heat. In the 2050s and 2090s, under a moderate scenario, there are 83.69 (95% empirical confidence interval [eCI] 38.32–124.97) and 77.31 (95% eCI 36.84–114.47) all-cause deaths per 100,000 population, while there are 345.07 (95% eCI 258.31–438.66) and 379.62 (95% eCI 271.45–509.05) all-cause morbidity associated with non-optimal temperatures. These trends were largely consistent across causes, age, and sex groups. Future heat-attributable health burden is projected to increase substantially, with spatiotemporal variations and is particularly pronounced among individuals ≥65 y and males. Full human adaptation could yield a decreasing temperature-attributable mortality and morbidity in line with a decreasing population.
Interpretation
Our findings could support the development of targeted mitigation and adaptation strategies to address future heat-related impacts effectively. This includes improved healthcare allocations for ambulance dispatch and hospital preventive measures during heat periods, particularly custom-tailored to address specific health outcomes and vulnerable subpopulations.
Funding
Japan Science and Technology Agency and Environmental Restoration and Conservation Agency and Ministry of the Environment of Japan.
期刊介绍:
The Lancet Regional Health – Western Pacific, a gold open access journal, is an integral part of The Lancet's global initiative advocating for healthcare quality and access worldwide. It aims to advance clinical practice and health policy in the Western Pacific region, contributing to enhanced health outcomes. The journal publishes high-quality original research shedding light on clinical practice and health policy in the region. It also includes reviews, commentaries, and opinion pieces covering diverse regional health topics, such as infectious diseases, non-communicable diseases, child and adolescent health, maternal and reproductive health, aging health, mental health, the health workforce and systems, and health policy.