Simona Panunzi , Marcello Pompa , Alessandro Borri , Pietro Marco D’Angelo , Laura D’Orsi , Andrea De Gaetano
{"title":"预测危机受害者生理演变的连续监测贝叶斯方法:决策支持系统","authors":"Simona Panunzi , Marcello Pompa , Alessandro Borri , Pietro Marco D’Angelo , Laura D’Orsi , Andrea De Gaetano","doi":"10.1016/j.ijdrr.2024.104890","DOIUrl":null,"url":null,"abstract":"<div><div>Catastrophic events like earthquakes demand innovative tools for crisis management. Mathematical modeling and decision support systems (DSSs) have proved crucial for understanding, predicting and mitigating disaster impact. The quantification of complex phenomena through probabilistic models, to estimate the likelihood of events, provides actionable insights that are essential for disaster risk reduction (DRR).</div><div>The present work stems from research conducted within the framework of the Search & Rescue (S&R) project (H2020-SU-SEC-2019), in particular from the development of the PHYSIO DSS module, the medical component of the S&R Decision Support System (DSS). The PHYSIO DSS focuses on predicting the physiological evolution of crisis victims: using a Bayesian approach, it incorporates real-time field observations to forecast patient conditions. This enables the prediction of the evolution of physiological compensation, allowing efficient resource allocation and timely interventions. By providing real-time insights into victim severity, PHYSIO DSS empowers medical personnel to prioritize treatment, potentially saving lives. Its adaptability allows integration into different platforms, from crisis management systems to apps to personal health devices.</div><div>This tool has the potential to substantially enhance emergency response capability and overall disaster resilience by offering real-time, data-driven decision support.</div></div>","PeriodicalId":13915,"journal":{"name":"International journal of disaster risk reduction","volume":"113 ","pages":"Article 104890"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A bayesian approach for the continuous monitoring of the prediction of the physiological evolution of a crisis victim: A decision support system\",\"authors\":\"Simona Panunzi , Marcello Pompa , Alessandro Borri , Pietro Marco D’Angelo , Laura D’Orsi , Andrea De Gaetano\",\"doi\":\"10.1016/j.ijdrr.2024.104890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Catastrophic events like earthquakes demand innovative tools for crisis management. Mathematical modeling and decision support systems (DSSs) have proved crucial for understanding, predicting and mitigating disaster impact. The quantification of complex phenomena through probabilistic models, to estimate the likelihood of events, provides actionable insights that are essential for disaster risk reduction (DRR).</div><div>The present work stems from research conducted within the framework of the Search & Rescue (S&R) project (H2020-SU-SEC-2019), in particular from the development of the PHYSIO DSS module, the medical component of the S&R Decision Support System (DSS). The PHYSIO DSS focuses on predicting the physiological evolution of crisis victims: using a Bayesian approach, it incorporates real-time field observations to forecast patient conditions. This enables the prediction of the evolution of physiological compensation, allowing efficient resource allocation and timely interventions. By providing real-time insights into victim severity, PHYSIO DSS empowers medical personnel to prioritize treatment, potentially saving lives. Its adaptability allows integration into different platforms, from crisis management systems to apps to personal health devices.</div><div>This tool has the potential to substantially enhance emergency response capability and overall disaster resilience by offering real-time, data-driven decision support.</div></div>\",\"PeriodicalId\":13915,\"journal\":{\"name\":\"International journal of disaster risk reduction\",\"volume\":\"113 \",\"pages\":\"Article 104890\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of disaster risk reduction\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212420924006526\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of disaster risk reduction","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212420924006526","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
A bayesian approach for the continuous monitoring of the prediction of the physiological evolution of a crisis victim: A decision support system
Catastrophic events like earthquakes demand innovative tools for crisis management. Mathematical modeling and decision support systems (DSSs) have proved crucial for understanding, predicting and mitigating disaster impact. The quantification of complex phenomena through probabilistic models, to estimate the likelihood of events, provides actionable insights that are essential for disaster risk reduction (DRR).
The present work stems from research conducted within the framework of the Search & Rescue (S&R) project (H2020-SU-SEC-2019), in particular from the development of the PHYSIO DSS module, the medical component of the S&R Decision Support System (DSS). The PHYSIO DSS focuses on predicting the physiological evolution of crisis victims: using a Bayesian approach, it incorporates real-time field observations to forecast patient conditions. This enables the prediction of the evolution of physiological compensation, allowing efficient resource allocation and timely interventions. By providing real-time insights into victim severity, PHYSIO DSS empowers medical personnel to prioritize treatment, potentially saving lives. Its adaptability allows integration into different platforms, from crisis management systems to apps to personal health devices.
This tool has the potential to substantially enhance emergency response capability and overall disaster resilience by offering real-time, data-driven decision support.
期刊介绍:
The International Journal of Disaster Risk Reduction (IJDRR) is the journal for researchers, policymakers and practitioners across diverse disciplines: earth sciences and their implications; environmental sciences; engineering; urban studies; geography; and the social sciences. IJDRR publishes fundamental and applied research, critical reviews, policy papers and case studies with a particular focus on multi-disciplinary research that aims to reduce the impact of natural, technological, social and intentional disasters. IJDRR stimulates exchange of ideas and knowledge transfer on disaster research, mitigation, adaptation, prevention and risk reduction at all geographical scales: local, national and international.
Key topics:-
-multifaceted disaster and cascading disasters
-the development of disaster risk reduction strategies and techniques
-discussion and development of effective warning and educational systems for risk management at all levels
-disasters associated with climate change
-vulnerability analysis and vulnerability trends
-emerging risks
-resilience against disasters.
The journal particularly encourages papers that approach risk from a multi-disciplinary perspective.