{"title":"通过深度学习和自适应优化算法实现智能可控超快光纤激光器","authors":"Chuhui Zhang , Pengfei Xiang , Wei Zhu , Chen Chen , Xueming Liu","doi":"10.1016/j.infrared.2024.105572","DOIUrl":null,"url":null,"abstract":"<div><div>Ultrafast fiber lasers based on nonlinear polarization rotation can generate femtosecond pulses with different pulse durations and high peak powers, which are powerful tools for engineering applications and scientific research. However, achieving a precise and repeatable polarization state for generating the ultrashort pulses with the shortest pulse duration remains a significant challenge. In this paper, we extend the use of recurrent neural networks and adaptive optimization algorithms, specifically designed to optimize repetitive processes in optical systems, to facilitate intelligent search and control aimed at achieving the minimum pulse duration within a mode-locked fiber laser cavity. Our multi-algorithm-based intelligent system can fully simulate and optimize the processes involved in hands-on experiments. Our intelligent system identified a mode-locked fiber laser with the shortest pulse duration of 465 fs, which was experimentally verified. The proposed intelligent algorithm not only identifies the shortest pulse but also holds significant potential for selecting related laser characteristic parameters. We believe this work opens up a novel avenue for exploration and optimization in mode-locked lasers and the intelligent laser can find practical applications in engineering and scientific research.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent controllable ultrafast fiber laser via deep learning and adaptive optimization algorithm\",\"authors\":\"Chuhui Zhang , Pengfei Xiang , Wei Zhu , Chen Chen , Xueming Liu\",\"doi\":\"10.1016/j.infrared.2024.105572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ultrafast fiber lasers based on nonlinear polarization rotation can generate femtosecond pulses with different pulse durations and high peak powers, which are powerful tools for engineering applications and scientific research. However, achieving a precise and repeatable polarization state for generating the ultrashort pulses with the shortest pulse duration remains a significant challenge. In this paper, we extend the use of recurrent neural networks and adaptive optimization algorithms, specifically designed to optimize repetitive processes in optical systems, to facilitate intelligent search and control aimed at achieving the minimum pulse duration within a mode-locked fiber laser cavity. Our multi-algorithm-based intelligent system can fully simulate and optimize the processes involved in hands-on experiments. Our intelligent system identified a mode-locked fiber laser with the shortest pulse duration of 465 fs, which was experimentally verified. The proposed intelligent algorithm not only identifies the shortest pulse but also holds significant potential for selecting related laser characteristic parameters. We believe this work opens up a novel avenue for exploration and optimization in mode-locked lasers and the intelligent laser can find practical applications in engineering and scientific research.</div></div>\",\"PeriodicalId\":13549,\"journal\":{\"name\":\"Infrared Physics & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infrared Physics & Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350449524004560\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrared Physics & Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350449524004560","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Intelligent controllable ultrafast fiber laser via deep learning and adaptive optimization algorithm
Ultrafast fiber lasers based on nonlinear polarization rotation can generate femtosecond pulses with different pulse durations and high peak powers, which are powerful tools for engineering applications and scientific research. However, achieving a precise and repeatable polarization state for generating the ultrashort pulses with the shortest pulse duration remains a significant challenge. In this paper, we extend the use of recurrent neural networks and adaptive optimization algorithms, specifically designed to optimize repetitive processes in optical systems, to facilitate intelligent search and control aimed at achieving the minimum pulse duration within a mode-locked fiber laser cavity. Our multi-algorithm-based intelligent system can fully simulate and optimize the processes involved in hands-on experiments. Our intelligent system identified a mode-locked fiber laser with the shortest pulse duration of 465 fs, which was experimentally verified. The proposed intelligent algorithm not only identifies the shortest pulse but also holds significant potential for selecting related laser characteristic parameters. We believe this work opens up a novel avenue for exploration and optimization in mode-locked lasers and the intelligent laser can find practical applications in engineering and scientific research.
期刊介绍:
The Journal covers the entire field of infrared physics and technology: theory, experiment, application, devices and instrumentation. Infrared'' is defined as covering the near, mid and far infrared (terahertz) regions from 0.75um (750nm) to 1mm (300GHz.) Submissions in the 300GHz to 100GHz region may be accepted at the editors discretion if their content is relevant to shorter wavelengths. Submissions must be primarily concerned with and directly relevant to this spectral region.
Its core topics can be summarized as the generation, propagation and detection, of infrared radiation; the associated optics, materials and devices; and its use in all fields of science, industry, engineering and medicine.
Infrared techniques occur in many different fields, notably spectroscopy and interferometry; material characterization and processing; atmospheric physics, astronomy and space research. Scientific aspects include lasers, quantum optics, quantum electronics, image processing and semiconductor physics. Some important applications are medical diagnostics and treatment, industrial inspection and environmental monitoring.