{"title":"基于经验的红外探测器噪声模型,用于系统尺寸确定和模拟","authors":"Alain Kattnig, Christian Musso","doi":"10.1016/j.infrared.2024.105589","DOIUrl":null,"url":null,"abstract":"<div><div>We show that infrared detectors frequently exhibit non-Gaussian spatial noise, which makes it difficult to compare their performance. The power-law-like behavior we show can be very detrimental to certain detection missions, hence the need to characterize this noise. We demonstrate that a simple mixture of Gaussian and Student processes corresponds to the observed example, and that the parameter determination procedure described here reaches its theoretical limit.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":"142 ","pages":"Article 105589"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experience-based noise model of infrared detectors for system dimensioning and simulation\",\"authors\":\"Alain Kattnig, Christian Musso\",\"doi\":\"10.1016/j.infrared.2024.105589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We show that infrared detectors frequently exhibit non-Gaussian spatial noise, which makes it difficult to compare their performance. The power-law-like behavior we show can be very detrimental to certain detection missions, hence the need to characterize this noise. We demonstrate that a simple mixture of Gaussian and Student processes corresponds to the observed example, and that the parameter determination procedure described here reaches its theoretical limit.</div></div>\",\"PeriodicalId\":13549,\"journal\":{\"name\":\"Infrared Physics & Technology\",\"volume\":\"142 \",\"pages\":\"Article 105589\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infrared Physics & Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350449524004730\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrared Physics & Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350449524004730","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Experience-based noise model of infrared detectors for system dimensioning and simulation
We show that infrared detectors frequently exhibit non-Gaussian spatial noise, which makes it difficult to compare their performance. The power-law-like behavior we show can be very detrimental to certain detection missions, hence the need to characterize this noise. We demonstrate that a simple mixture of Gaussian and Student processes corresponds to the observed example, and that the parameter determination procedure described here reaches its theoretical limit.
期刊介绍:
The Journal covers the entire field of infrared physics and technology: theory, experiment, application, devices and instrumentation. Infrared'' is defined as covering the near, mid and far infrared (terahertz) regions from 0.75um (750nm) to 1mm (300GHz.) Submissions in the 300GHz to 100GHz region may be accepted at the editors discretion if their content is relevant to shorter wavelengths. Submissions must be primarily concerned with and directly relevant to this spectral region.
Its core topics can be summarized as the generation, propagation and detection, of infrared radiation; the associated optics, materials and devices; and its use in all fields of science, industry, engineering and medicine.
Infrared techniques occur in many different fields, notably spectroscopy and interferometry; material characterization and processing; atmospheric physics, astronomy and space research. Scientific aspects include lasers, quantum optics, quantum electronics, image processing and semiconductor physics. Some important applications are medical diagnostics and treatment, industrial inspection and environmental monitoring.