Emer B. Farrell, Gareth Redmond, Robert P. Johnson
{"title":"用离子电流整流石英纳米吸头监测螺嗪-猩红嗪光异构化过程","authors":"Emer B. Farrell, Gareth Redmond, Robert P. Johnson","doi":"10.1016/j.elecom.2024.107820","DOIUrl":null,"url":null,"abstract":"<div><div>The characterization and discrimination of chemical compounds is imperative in both academia and industry, but currently relies on expensive and/or bulky instrumentation. Herein, we demonstrate that the ion transport properties of bare quartz nanopipettes containing aprotic acetonitrile electrolyte can be used discriminate isomers based on polarization and solvation, through changes to interfacial solvent ordering at the nanopore wall. This is demonstrated by monitoring the photoinduced isomerization of spirooxazine to merocyanine using the ion-current rectification of a quartz-nanopipette containing acetonitrile electrolyte, which results in an increase in rectification ratio (RR) from 3.6 ± 0.3 to 5.1 ± 0.2. This change is comparable to traditional UV–Vis absorbance and fluorescence measurements of the same process, with the appearance of a small shoulder-like absorbance peak from 400 to 500 nm, and a strong fluorescence signal at 430 nm.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"168 ","pages":"Article 107820"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring spirooxazine–merocyanine photoisomerization with ion-current rectifying quartz nanopipettes\",\"authors\":\"Emer B. Farrell, Gareth Redmond, Robert P. Johnson\",\"doi\":\"10.1016/j.elecom.2024.107820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The characterization and discrimination of chemical compounds is imperative in both academia and industry, but currently relies on expensive and/or bulky instrumentation. Herein, we demonstrate that the ion transport properties of bare quartz nanopipettes containing aprotic acetonitrile electrolyte can be used discriminate isomers based on polarization and solvation, through changes to interfacial solvent ordering at the nanopore wall. This is demonstrated by monitoring the photoinduced isomerization of spirooxazine to merocyanine using the ion-current rectification of a quartz-nanopipette containing acetonitrile electrolyte, which results in an increase in rectification ratio (RR) from 3.6 ± 0.3 to 5.1 ± 0.2. This change is comparable to traditional UV–Vis absorbance and fluorescence measurements of the same process, with the appearance of a small shoulder-like absorbance peak from 400 to 500 nm, and a strong fluorescence signal at 430 nm.</div></div>\",\"PeriodicalId\":304,\"journal\":{\"name\":\"Electrochemistry Communications\",\"volume\":\"168 \",\"pages\":\"Article 107820\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemistry Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388248124001632\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248124001632","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Monitoring spirooxazine–merocyanine photoisomerization with ion-current rectifying quartz nanopipettes
The characterization and discrimination of chemical compounds is imperative in both academia and industry, but currently relies on expensive and/or bulky instrumentation. Herein, we demonstrate that the ion transport properties of bare quartz nanopipettes containing aprotic acetonitrile electrolyte can be used discriminate isomers based on polarization and solvation, through changes to interfacial solvent ordering at the nanopore wall. This is demonstrated by monitoring the photoinduced isomerization of spirooxazine to merocyanine using the ion-current rectification of a quartz-nanopipette containing acetonitrile electrolyte, which results in an increase in rectification ratio (RR) from 3.6 ± 0.3 to 5.1 ± 0.2. This change is comparable to traditional UV–Vis absorbance and fluorescence measurements of the same process, with the appearance of a small shoulder-like absorbance peak from 400 to 500 nm, and a strong fluorescence signal at 430 nm.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.