Renlian Zhou , Monjee K. Almustafa , Moncef L. Nehdi , Huaizhi Su
{"title":"利用无人机载热成像仪和基于 YOLO 的物体探测器自动定位堤坝渗漏口","authors":"Renlian Zhou , Monjee K. Almustafa , Moncef L. Nehdi , Huaizhi Su","doi":"10.1016/j.isprsjprs.2024.09.039","DOIUrl":null,"url":null,"abstract":"<div><div>Leakage-induced soil erosion poses a major threat to dike failure, particularly during floods. Timely detection and notification of leakage outlets to dike management are crucial for ensuring dike safety. However, manual inspection, the current main approach for identifying leakage outlets, is costly, inefficient, and lacks spatial coverage. To achieve efficient and automatic localization of dike leakage outlets, an innovative strategy combining drones, infrared thermography, and deep learning is presented. Drones are employed for dikes’ surface sensing. Real-time images from these drones are sent to a server where well-trained detectors are deployed. Once a leakage outlet is detected, alarming information is remotely sent to dike managers. To realize this strategy, 4 thermal imagers were employed to image leaking outlets of several models and actual dikes. 9,231 hand-labeled thermal images with 13,387 leaking objects were selected for analysis. 19 detectors were trained using transfer learning. The best detector achieved a mean average precision of 95.8 % on the challenging test set. A full-scale embankment was constructed for leakage outlet detection tests. Various field tests confirmed the efficiency of the proposed leakage outlet localization method. In some tough conditions, the trained detector also evidently outperformed manual judgement. Results indicate that under typical circumstances, the localization error of the proposed method is within 5 m, demonstrating its practical reliability. Finally, the influencing factors and limits of the suggested strategy are thoroughly examined.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"218 ","pages":"Pages 551-573"},"PeriodicalIF":10.6000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated localization of dike leakage outlets using UAV-borne thermography and YOLO-based object detectors\",\"authors\":\"Renlian Zhou , Monjee K. Almustafa , Moncef L. Nehdi , Huaizhi Su\",\"doi\":\"10.1016/j.isprsjprs.2024.09.039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Leakage-induced soil erosion poses a major threat to dike failure, particularly during floods. Timely detection and notification of leakage outlets to dike management are crucial for ensuring dike safety. However, manual inspection, the current main approach for identifying leakage outlets, is costly, inefficient, and lacks spatial coverage. To achieve efficient and automatic localization of dike leakage outlets, an innovative strategy combining drones, infrared thermography, and deep learning is presented. Drones are employed for dikes’ surface sensing. Real-time images from these drones are sent to a server where well-trained detectors are deployed. Once a leakage outlet is detected, alarming information is remotely sent to dike managers. To realize this strategy, 4 thermal imagers were employed to image leaking outlets of several models and actual dikes. 9,231 hand-labeled thermal images with 13,387 leaking objects were selected for analysis. 19 detectors were trained using transfer learning. The best detector achieved a mean average precision of 95.8 % on the challenging test set. A full-scale embankment was constructed for leakage outlet detection tests. Various field tests confirmed the efficiency of the proposed leakage outlet localization method. In some tough conditions, the trained detector also evidently outperformed manual judgement. Results indicate that under typical circumstances, the localization error of the proposed method is within 5 m, demonstrating its practical reliability. Finally, the influencing factors and limits of the suggested strategy are thoroughly examined.</div></div>\",\"PeriodicalId\":50269,\"journal\":{\"name\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"volume\":\"218 \",\"pages\":\"Pages 551-573\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924271624003770\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624003770","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Automated localization of dike leakage outlets using UAV-borne thermography and YOLO-based object detectors
Leakage-induced soil erosion poses a major threat to dike failure, particularly during floods. Timely detection and notification of leakage outlets to dike management are crucial for ensuring dike safety. However, manual inspection, the current main approach for identifying leakage outlets, is costly, inefficient, and lacks spatial coverage. To achieve efficient and automatic localization of dike leakage outlets, an innovative strategy combining drones, infrared thermography, and deep learning is presented. Drones are employed for dikes’ surface sensing. Real-time images from these drones are sent to a server where well-trained detectors are deployed. Once a leakage outlet is detected, alarming information is remotely sent to dike managers. To realize this strategy, 4 thermal imagers were employed to image leaking outlets of several models and actual dikes. 9,231 hand-labeled thermal images with 13,387 leaking objects were selected for analysis. 19 detectors were trained using transfer learning. The best detector achieved a mean average precision of 95.8 % on the challenging test set. A full-scale embankment was constructed for leakage outlet detection tests. Various field tests confirmed the efficiency of the proposed leakage outlet localization method. In some tough conditions, the trained detector also evidently outperformed manual judgement. Results indicate that under typical circumstances, the localization error of the proposed method is within 5 m, demonstrating its practical reliability. Finally, the influencing factors and limits of the suggested strategy are thoroughly examined.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.