Pan Zhang , Baochai Peng , Chaoran Lu , Quanjin Huang , Dongsheng Liu
{"title":"ASANet:用于 RGB 和合成孔径雷达图像土地覆被分类的非对称语义对齐网络","authors":"Pan Zhang , Baochai Peng , Chaoran Lu , Quanjin Huang , Dongsheng Liu","doi":"10.1016/j.isprsjprs.2024.09.025","DOIUrl":null,"url":null,"abstract":"<div><div>Synthetic Aperture Radar (SAR) images have proven to be a valuable cue for multimodal Land Cover Classification (LCC) when combined with RGB images. Most existing studies on cross-modal fusion assume that consistent feature information is necessary between the two modalities, and as a result, they construct networks without adequately addressing the unique characteristics of each modality. In this paper, we propose a novel architecture, named the Asymmetric Semantic Aligning Network (ASANet), which introduces asymmetry at the feature level to address the issue that multi-modal architectures frequently fail to fully utilize complementary features. The core of this network is the Semantic Focusing Module (SFM), which explicitly calculates differential weights for each modality to account for the modality-specific features. Furthermore, ASANet incorporates a Cascade Fusion Module (CFM), which delves deeper into channel and spatial representations to efficiently select features from the two modalities for fusion. Through the collaborative effort of these two modules, the proposed ASANet effectively learns feature correlations between the two modalities and eliminates noise caused by feature differences. Comprehensive experiments demonstrate that ASANet achieves excellent performance on three multimodal datasets. Additionally, we have established a new RGB-SAR multimodal dataset, on which our ASANet outperforms other mainstream methods with improvements ranging from 1.21% to 17.69%. The ASANet runs at 48.7 frames per second (FPS) when the input image is 256 × 256 pixels.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"218 ","pages":"Pages 574-587"},"PeriodicalIF":10.6000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ASANet: Asymmetric Semantic Aligning Network for RGB and SAR image land cover classification\",\"authors\":\"Pan Zhang , Baochai Peng , Chaoran Lu , Quanjin Huang , Dongsheng Liu\",\"doi\":\"10.1016/j.isprsjprs.2024.09.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Synthetic Aperture Radar (SAR) images have proven to be a valuable cue for multimodal Land Cover Classification (LCC) when combined with RGB images. Most existing studies on cross-modal fusion assume that consistent feature information is necessary between the two modalities, and as a result, they construct networks without adequately addressing the unique characteristics of each modality. In this paper, we propose a novel architecture, named the Asymmetric Semantic Aligning Network (ASANet), which introduces asymmetry at the feature level to address the issue that multi-modal architectures frequently fail to fully utilize complementary features. The core of this network is the Semantic Focusing Module (SFM), which explicitly calculates differential weights for each modality to account for the modality-specific features. Furthermore, ASANet incorporates a Cascade Fusion Module (CFM), which delves deeper into channel and spatial representations to efficiently select features from the two modalities for fusion. Through the collaborative effort of these two modules, the proposed ASANet effectively learns feature correlations between the two modalities and eliminates noise caused by feature differences. Comprehensive experiments demonstrate that ASANet achieves excellent performance on three multimodal datasets. Additionally, we have established a new RGB-SAR multimodal dataset, on which our ASANet outperforms other mainstream methods with improvements ranging from 1.21% to 17.69%. The ASANet runs at 48.7 frames per second (FPS) when the input image is 256 × 256 pixels.</div></div>\",\"PeriodicalId\":50269,\"journal\":{\"name\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"volume\":\"218 \",\"pages\":\"Pages 574-587\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924271624003630\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624003630","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
ASANet: Asymmetric Semantic Aligning Network for RGB and SAR image land cover classification
Synthetic Aperture Radar (SAR) images have proven to be a valuable cue for multimodal Land Cover Classification (LCC) when combined with RGB images. Most existing studies on cross-modal fusion assume that consistent feature information is necessary between the two modalities, and as a result, they construct networks without adequately addressing the unique characteristics of each modality. In this paper, we propose a novel architecture, named the Asymmetric Semantic Aligning Network (ASANet), which introduces asymmetry at the feature level to address the issue that multi-modal architectures frequently fail to fully utilize complementary features. The core of this network is the Semantic Focusing Module (SFM), which explicitly calculates differential weights for each modality to account for the modality-specific features. Furthermore, ASANet incorporates a Cascade Fusion Module (CFM), which delves deeper into channel and spatial representations to efficiently select features from the two modalities for fusion. Through the collaborative effort of these two modules, the proposed ASANet effectively learns feature correlations between the two modalities and eliminates noise caused by feature differences. Comprehensive experiments demonstrate that ASANet achieves excellent performance on three multimodal datasets. Additionally, we have established a new RGB-SAR multimodal dataset, on which our ASANet outperforms other mainstream methods with improvements ranging from 1.21% to 17.69%. The ASANet runs at 48.7 frames per second (FPS) when the input image is 256 × 256 pixels.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.