Zhiyan Yao , Feng Qin , Jinzhu Li , Xihuang Zhang , Fenglei Huang
{"title":"动能弹丸穿透混凝土的实验和三维介观数值模拟研究","authors":"Zhiyan Yao , Feng Qin , Jinzhu Li , Xihuang Zhang , Fenglei Huang","doi":"10.1016/j.ijimpeng.2024.105140","DOIUrl":null,"url":null,"abstract":"<div><div>Concrete is a multiphase composite material composed of mortar, aggregate, and interface transition zone (ITZ). The mesoscopic components of concrete have an important influence on its anti-penetration performance. In this study, a series of penetration experiments with large-caliber ogive-nosed projectiles penetrating concrete targets are carried out. The test results show that the damage to the concrete target consists of crater and tunnel zones and increases with increasing impact velocity. Then, a local background grid method is proposed to establish a 3D mesoscopic model of concrete, based on the arrangement characteristics of the sequence number of the finite elements. Compared with the traditional 3D mesoscopic concrete modeling method, the proposed method can effectively improve the modeling efficiency. Subsequently, numerical simulations are performed based on the 3D mesoscopic model, with the simulation and experimental results in good agreement, verifying the effectiveness of the model. Finally, the verified 3D mesoscopic model is employed to investigate the effects of shape, volume fraction, size interval, and strength of the concrete aggregates on the depth of penetration (DOP) and deflection of the projectile. The simulation results indicate that the shape of the aggregate has a negligible effect on both uniaxial compressive strength and DOP. Therefore, spherical aggregates are used to improve modeling efficiency. Increasing the volume fraction and strength of the aggregates can significantly enhance the anti-penetration performance of concrete. The influence of aggregate size interval on DOP is slight, but it has a significant impact on projectile and trajectory deflection at the same aggregate volume fraction. The uneven lateral resistance on both sides of the projectile, caused by the random distribution of aggregates, is a major factor in deflection.</div></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":"195 ","pages":"Article 105140"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and 3D mesoscopic numerical simulation study of kinetic projectile penetrating into concrete\",\"authors\":\"Zhiyan Yao , Feng Qin , Jinzhu Li , Xihuang Zhang , Fenglei Huang\",\"doi\":\"10.1016/j.ijimpeng.2024.105140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Concrete is a multiphase composite material composed of mortar, aggregate, and interface transition zone (ITZ). The mesoscopic components of concrete have an important influence on its anti-penetration performance. In this study, a series of penetration experiments with large-caliber ogive-nosed projectiles penetrating concrete targets are carried out. The test results show that the damage to the concrete target consists of crater and tunnel zones and increases with increasing impact velocity. Then, a local background grid method is proposed to establish a 3D mesoscopic model of concrete, based on the arrangement characteristics of the sequence number of the finite elements. Compared with the traditional 3D mesoscopic concrete modeling method, the proposed method can effectively improve the modeling efficiency. Subsequently, numerical simulations are performed based on the 3D mesoscopic model, with the simulation and experimental results in good agreement, verifying the effectiveness of the model. Finally, the verified 3D mesoscopic model is employed to investigate the effects of shape, volume fraction, size interval, and strength of the concrete aggregates on the depth of penetration (DOP) and deflection of the projectile. The simulation results indicate that the shape of the aggregate has a negligible effect on both uniaxial compressive strength and DOP. Therefore, spherical aggregates are used to improve modeling efficiency. Increasing the volume fraction and strength of the aggregates can significantly enhance the anti-penetration performance of concrete. The influence of aggregate size interval on DOP is slight, but it has a significant impact on projectile and trajectory deflection at the same aggregate volume fraction. The uneven lateral resistance on both sides of the projectile, caused by the random distribution of aggregates, is a major factor in deflection.</div></div>\",\"PeriodicalId\":50318,\"journal\":{\"name\":\"International Journal of Impact Engineering\",\"volume\":\"195 \",\"pages\":\"Article 105140\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Impact Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0734743X24002653\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Impact Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734743X24002653","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Experimental and 3D mesoscopic numerical simulation study of kinetic projectile penetrating into concrete
Concrete is a multiphase composite material composed of mortar, aggregate, and interface transition zone (ITZ). The mesoscopic components of concrete have an important influence on its anti-penetration performance. In this study, a series of penetration experiments with large-caliber ogive-nosed projectiles penetrating concrete targets are carried out. The test results show that the damage to the concrete target consists of crater and tunnel zones and increases with increasing impact velocity. Then, a local background grid method is proposed to establish a 3D mesoscopic model of concrete, based on the arrangement characteristics of the sequence number of the finite elements. Compared with the traditional 3D mesoscopic concrete modeling method, the proposed method can effectively improve the modeling efficiency. Subsequently, numerical simulations are performed based on the 3D mesoscopic model, with the simulation and experimental results in good agreement, verifying the effectiveness of the model. Finally, the verified 3D mesoscopic model is employed to investigate the effects of shape, volume fraction, size interval, and strength of the concrete aggregates on the depth of penetration (DOP) and deflection of the projectile. The simulation results indicate that the shape of the aggregate has a negligible effect on both uniaxial compressive strength and DOP. Therefore, spherical aggregates are used to improve modeling efficiency. Increasing the volume fraction and strength of the aggregates can significantly enhance the anti-penetration performance of concrete. The influence of aggregate size interval on DOP is slight, but it has a significant impact on projectile and trajectory deflection at the same aggregate volume fraction. The uneven lateral resistance on both sides of the projectile, caused by the random distribution of aggregates, is a major factor in deflection.
期刊介绍:
The International Journal of Impact Engineering, established in 1983 publishes original research findings related to the response of structures, components and materials subjected to impact, blast and high-rate loading. Areas relevant to the journal encompass the following general topics and those associated with them:
-Behaviour and failure of structures and materials under impact and blast loading
-Systems for protection and absorption of impact and blast loading
-Terminal ballistics
-Dynamic behaviour and failure of materials including plasticity and fracture
-Stress waves
-Structural crashworthiness
-High-rate mechanical and forming processes
-Impact, blast and high-rate loading/measurement techniques and their applications