{"title":"可持续创业中的数据科学:多学科应用领域","authors":"Brij B. Gupta , Akshat Gaurav , Varsha Arya , Wadee Alhalabi","doi":"10.1016/j.techfore.2024.123798","DOIUrl":null,"url":null,"abstract":"<div><div>Defined as the merging of social and environmental sustainability into corporate operations, sustainable entrepreneurship has embraced data science more and more to improve operational effectiveness and decision-making. Using statistics, machine learning, and computer science to uncover insights from challenging datasets, this interdisciplinary method blends the ideas of sustainability with sophisticated data analysis approaches. Our research supports the choice of this issue by stressing the urgent requirement of sophisticated analytical instruments to negotiate the complexity of sustainable business practices. We compare our proposed model against Logistic Regression, Feedforward Neural Networks, and Support Vector Machines (SVMs). This not only shows how better CNN models are for certain uses but also highlights the general possibilities of data science in promoting sustainability in business. Our results highlight the transforming ability of sophisticated machine learning methods in promoting informed, sustainable decision-making and supporting the more general conversation on sustainable business.</div></div>","PeriodicalId":48454,"journal":{"name":"Technological Forecasting and Social Change","volume":"209 ","pages":"Article 123798"},"PeriodicalIF":12.9000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data science in sustainable entrepreneurship: A multidisciplinary field of applications\",\"authors\":\"Brij B. Gupta , Akshat Gaurav , Varsha Arya , Wadee Alhalabi\",\"doi\":\"10.1016/j.techfore.2024.123798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Defined as the merging of social and environmental sustainability into corporate operations, sustainable entrepreneurship has embraced data science more and more to improve operational effectiveness and decision-making. Using statistics, machine learning, and computer science to uncover insights from challenging datasets, this interdisciplinary method blends the ideas of sustainability with sophisticated data analysis approaches. Our research supports the choice of this issue by stressing the urgent requirement of sophisticated analytical instruments to negotiate the complexity of sustainable business practices. We compare our proposed model against Logistic Regression, Feedforward Neural Networks, and Support Vector Machines (SVMs). This not only shows how better CNN models are for certain uses but also highlights the general possibilities of data science in promoting sustainability in business. Our results highlight the transforming ability of sophisticated machine learning methods in promoting informed, sustainable decision-making and supporting the more general conversation on sustainable business.</div></div>\",\"PeriodicalId\":48454,\"journal\":{\"name\":\"Technological Forecasting and Social Change\",\"volume\":\"209 \",\"pages\":\"Article 123798\"},\"PeriodicalIF\":12.9000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technological Forecasting and Social Change\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040162524005961\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technological Forecasting and Social Change","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040162524005961","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
Data science in sustainable entrepreneurship: A multidisciplinary field of applications
Defined as the merging of social and environmental sustainability into corporate operations, sustainable entrepreneurship has embraced data science more and more to improve operational effectiveness and decision-making. Using statistics, machine learning, and computer science to uncover insights from challenging datasets, this interdisciplinary method blends the ideas of sustainability with sophisticated data analysis approaches. Our research supports the choice of this issue by stressing the urgent requirement of sophisticated analytical instruments to negotiate the complexity of sustainable business practices. We compare our proposed model against Logistic Regression, Feedforward Neural Networks, and Support Vector Machines (SVMs). This not only shows how better CNN models are for certain uses but also highlights the general possibilities of data science in promoting sustainability in business. Our results highlight the transforming ability of sophisticated machine learning methods in promoting informed, sustainable decision-making and supporting the more general conversation on sustainable business.
期刊介绍:
Technological Forecasting and Social Change is a prominent platform for individuals engaged in the methodology and application of technological forecasting and future studies as planning tools, exploring the interconnectedness of social, environmental, and technological factors.
In addition to serving as a key forum for these discussions, we offer numerous benefits for authors, including complimentary PDFs, a generous copyright policy, exclusive discounts on Elsevier publications, and more.