{"title":"受冲击荷载作用的夹紧钢筋混凝土梁的动态剪力和最大位移预测","authors":"Liuliang Cui , Xihong Zhang , Hong Hao","doi":"10.1016/j.ijimpeng.2024.105131","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a novel approach for predicting the dynamic shear forces and the maximum displacement of clamped reinforced concrete (RC) beams subjected to impact loading. By integrating wave propagation effects, membrane actions and the time-dependent acceleration distribution into the analysis, the study presents an improved approach based on single-degree-of-freedom (SDOF) analysis and overcomes the limitations of conventional SDOF method. The proposed model is validated against experimental data and finite-element simulations, demonstrating its reliability and accuracy in predicting dynamic response. Based on the validated model, a series of design charts are generated facilitating quick predictions of the maximum shear force at support and the maximum displacement of RC beams under impact, offering practical tools for engineers to enhance the safety and resilience of RC beams against impact loading.</div></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":"195 ","pages":"Article 105131"},"PeriodicalIF":5.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of dynamic shear and maximum displacement of clamped reinforced concrete beams subjected to impact loading\",\"authors\":\"Liuliang Cui , Xihong Zhang , Hong Hao\",\"doi\":\"10.1016/j.ijimpeng.2024.105131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a novel approach for predicting the dynamic shear forces and the maximum displacement of clamped reinforced concrete (RC) beams subjected to impact loading. By integrating wave propagation effects, membrane actions and the time-dependent acceleration distribution into the analysis, the study presents an improved approach based on single-degree-of-freedom (SDOF) analysis and overcomes the limitations of conventional SDOF method. The proposed model is validated against experimental data and finite-element simulations, demonstrating its reliability and accuracy in predicting dynamic response. Based on the validated model, a series of design charts are generated facilitating quick predictions of the maximum shear force at support and the maximum displacement of RC beams under impact, offering practical tools for engineers to enhance the safety and resilience of RC beams against impact loading.</div></div>\",\"PeriodicalId\":50318,\"journal\":{\"name\":\"International Journal of Impact Engineering\",\"volume\":\"195 \",\"pages\":\"Article 105131\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Impact Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0734743X24002562\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Impact Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734743X24002562","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Prediction of dynamic shear and maximum displacement of clamped reinforced concrete beams subjected to impact loading
This paper presents a novel approach for predicting the dynamic shear forces and the maximum displacement of clamped reinforced concrete (RC) beams subjected to impact loading. By integrating wave propagation effects, membrane actions and the time-dependent acceleration distribution into the analysis, the study presents an improved approach based on single-degree-of-freedom (SDOF) analysis and overcomes the limitations of conventional SDOF method. The proposed model is validated against experimental data and finite-element simulations, demonstrating its reliability and accuracy in predicting dynamic response. Based on the validated model, a series of design charts are generated facilitating quick predictions of the maximum shear force at support and the maximum displacement of RC beams under impact, offering practical tools for engineers to enhance the safety and resilience of RC beams against impact loading.
期刊介绍:
The International Journal of Impact Engineering, established in 1983 publishes original research findings related to the response of structures, components and materials subjected to impact, blast and high-rate loading. Areas relevant to the journal encompass the following general topics and those associated with them:
-Behaviour and failure of structures and materials under impact and blast loading
-Systems for protection and absorption of impact and blast loading
-Terminal ballistics
-Dynamic behaviour and failure of materials including plasticity and fracture
-Stress waves
-Structural crashworthiness
-High-rate mechanical and forming processes
-Impact, blast and high-rate loading/measurement techniques and their applications