Miaoshuo Li , Shixi Yang , Jun He , Xiwen Gu , Yongjia Xu , Fengshou Gu , Andrew D. Ball
{"title":"通过相位投影小波去噪全场提取微妙的位移成分,用于基于视觉的振动测量","authors":"Miaoshuo Li , Shixi Yang , Jun He , Xiwen Gu , Yongjia Xu , Fengshou Gu , Andrew D. Ball","doi":"10.1016/j.ymssp.2024.112021","DOIUrl":null,"url":null,"abstract":"<div><div>While vision-based methods are renowned for their ability in full-field vibration measurements, accurately and robustly extracting subtle displacements remains a significant challenge. To address this, this paper presents a novel Optimal Phase-projection Wavelet Denoising (OPWD) method for vision-based vibration measurement that is adept at extracting characteristics of subtle displacement components. The OPWD method enhances signal quality through a structured three-step process: constructing a signal model from pixel array data, transforming this model into the frequency-space domain, and applying wavelet denoising in the spatial dimension. The method was validated through experimental comparisons on a structural beam, confirming consistency with the resonance frequencies obtained from accelerometers and mode shapes from finite element analysis. This study also contributes a comprehensive framework that lays the groundwork for future developments and implementations of additional methods in vision-based vibration measurement.</div></div>","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"224 ","pages":"Article 112021"},"PeriodicalIF":7.9000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Full-field extraction of subtle displacement components via phase-projection wavelet denoising for vision-based vibration measurement\",\"authors\":\"Miaoshuo Li , Shixi Yang , Jun He , Xiwen Gu , Yongjia Xu , Fengshou Gu , Andrew D. Ball\",\"doi\":\"10.1016/j.ymssp.2024.112021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>While vision-based methods are renowned for their ability in full-field vibration measurements, accurately and robustly extracting subtle displacements remains a significant challenge. To address this, this paper presents a novel Optimal Phase-projection Wavelet Denoising (OPWD) method for vision-based vibration measurement that is adept at extracting characteristics of subtle displacement components. The OPWD method enhances signal quality through a structured three-step process: constructing a signal model from pixel array data, transforming this model into the frequency-space domain, and applying wavelet denoising in the spatial dimension. The method was validated through experimental comparisons on a structural beam, confirming consistency with the resonance frequencies obtained from accelerometers and mode shapes from finite element analysis. This study also contributes a comprehensive framework that lays the groundwork for future developments and implementations of additional methods in vision-based vibration measurement.</div></div>\",\"PeriodicalId\":51124,\"journal\":{\"name\":\"Mechanical Systems and Signal Processing\",\"volume\":\"224 \",\"pages\":\"Article 112021\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanical Systems and Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888327024009191\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888327024009191","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Full-field extraction of subtle displacement components via phase-projection wavelet denoising for vision-based vibration measurement
While vision-based methods are renowned for their ability in full-field vibration measurements, accurately and robustly extracting subtle displacements remains a significant challenge. To address this, this paper presents a novel Optimal Phase-projection Wavelet Denoising (OPWD) method for vision-based vibration measurement that is adept at extracting characteristics of subtle displacement components. The OPWD method enhances signal quality through a structured three-step process: constructing a signal model from pixel array data, transforming this model into the frequency-space domain, and applying wavelet denoising in the spatial dimension. The method was validated through experimental comparisons on a structural beam, confirming consistency with the resonance frequencies obtained from accelerometers and mode shapes from finite element analysis. This study also contributes a comprehensive framework that lays the groundwork for future developments and implementations of additional methods in vision-based vibration measurement.
期刊介绍:
Journal Name: Mechanical Systems and Signal Processing (MSSP)
Interdisciplinary Focus:
Mechanical, Aerospace, and Civil Engineering
Purpose:Reporting scientific advancements of the highest quality
Arising from new techniques in sensing, instrumentation, signal processing, modelling, and control of dynamic systems