Qiang Ma , Chuchen Xi , Chenxi Miao , Yongli Liu , Feng Wu
{"title":"土工格栅-砂界面在循环直接剪切作用下的力学行为 DEM 研究","authors":"Qiang Ma , Chuchen Xi , Chenxi Miao , Yongli Liu , Feng Wu","doi":"10.1016/j.geotexmem.2024.09.014","DOIUrl":null,"url":null,"abstract":"<div><div>The cyclic properties of geosynthetic soil interface are crucial for reinforced soil structures subject to seismic loading. To investigate the mechanical geogrid-sand interface behavior under cyclic shear conditions, a series of numerical simulation cyclic shear tests were conducted using the discrete element method. The results revealed with increasing of shear cycles, dense sand sample gradually shrunk, exhibiting obvious softening characteristics. The vertical displacement of the sample under simulated 10 cyclic shear increases by 0.27 mm, which is 0.41 mm lower than that under 1 cyclic shear. Meanwhile, obvious dilation was observed in the shear band. As the number of cyclic shear increases, the region where the particle rotation occurs does not change significantly, ranging from 75 mm to 125 mm. Higher sample density made it more difficult for particles at geogrid-sand interface to rotate. Under the same number of cycles, denser samples had narrower shear bands, smaller shear strain shifts, and larger shear stiffness. The sand size is 0.5 mm, and the particle displacement concentrated in the 3 mm shear zone. After the completion of cyclic shear, dense sand had little effect on the porosity of the unreinforced sand affected zone, and the porosity after cyclic cycle was close to the initial porosity.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"53 1","pages":"Pages 217-229"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DEM investigation on mechanical behavior of geogrid-sand interface subjected to cyclic direct shear\",\"authors\":\"Qiang Ma , Chuchen Xi , Chenxi Miao , Yongli Liu , Feng Wu\",\"doi\":\"10.1016/j.geotexmem.2024.09.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The cyclic properties of geosynthetic soil interface are crucial for reinforced soil structures subject to seismic loading. To investigate the mechanical geogrid-sand interface behavior under cyclic shear conditions, a series of numerical simulation cyclic shear tests were conducted using the discrete element method. The results revealed with increasing of shear cycles, dense sand sample gradually shrunk, exhibiting obvious softening characteristics. The vertical displacement of the sample under simulated 10 cyclic shear increases by 0.27 mm, which is 0.41 mm lower than that under 1 cyclic shear. Meanwhile, obvious dilation was observed in the shear band. As the number of cyclic shear increases, the region where the particle rotation occurs does not change significantly, ranging from 75 mm to 125 mm. Higher sample density made it more difficult for particles at geogrid-sand interface to rotate. Under the same number of cycles, denser samples had narrower shear bands, smaller shear strain shifts, and larger shear stiffness. The sand size is 0.5 mm, and the particle displacement concentrated in the 3 mm shear zone. After the completion of cyclic shear, dense sand had little effect on the porosity of the unreinforced sand affected zone, and the porosity after cyclic cycle was close to the initial porosity.</div></div>\",\"PeriodicalId\":55096,\"journal\":{\"name\":\"Geotextiles and Geomembranes\",\"volume\":\"53 1\",\"pages\":\"Pages 217-229\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotextiles and Geomembranes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S026611442400116X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026611442400116X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
DEM investigation on mechanical behavior of geogrid-sand interface subjected to cyclic direct shear
The cyclic properties of geosynthetic soil interface are crucial for reinforced soil structures subject to seismic loading. To investigate the mechanical geogrid-sand interface behavior under cyclic shear conditions, a series of numerical simulation cyclic shear tests were conducted using the discrete element method. The results revealed with increasing of shear cycles, dense sand sample gradually shrunk, exhibiting obvious softening characteristics. The vertical displacement of the sample under simulated 10 cyclic shear increases by 0.27 mm, which is 0.41 mm lower than that under 1 cyclic shear. Meanwhile, obvious dilation was observed in the shear band. As the number of cyclic shear increases, the region where the particle rotation occurs does not change significantly, ranging from 75 mm to 125 mm. Higher sample density made it more difficult for particles at geogrid-sand interface to rotate. Under the same number of cycles, denser samples had narrower shear bands, smaller shear strain shifts, and larger shear stiffness. The sand size is 0.5 mm, and the particle displacement concentrated in the 3 mm shear zone. After the completion of cyclic shear, dense sand had little effect on the porosity of the unreinforced sand affected zone, and the porosity after cyclic cycle was close to the initial porosity.
期刊介绍:
The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident.
Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.