使用深度学习、机器学习和新型子空间分类器以及多种特征提取技术的扬声器识别性能对比分析

IF 2.9 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Digital Signal Processing Pub Date : 2024-10-05 DOI:10.1016/j.dsp.2024.104811
Serkan Keser , Esra Gezer
{"title":"使用深度学习、机器学习和新型子空间分类器以及多种特征提取技术的扬声器识别性能对比分析","authors":"Serkan Keser ,&nbsp;Esra Gezer","doi":"10.1016/j.dsp.2024.104811","DOIUrl":null,"url":null,"abstract":"<div><div>Speaker identification is vital in various application domains, such as automation, security, and enhancing user experience. In the literature, convolutional neural network (CNN) or recurrent neural network (RNN) classifiers are generally used due to the one-dimensional time series of speech signals. However, new approaches using subspace classifiers are also crucial in speaker identification. In this study, in addition to the newly developed subspace classifiers for speaker identification, traditional classification algorithms, and various hybrid algorithms are analyzed in terms of performance. Stacked Features-Common Vector Approach (SF-CVA) and Hybrid CVA-Fisher Linear Discriminant Analysis (HCF) subspace classifiers are used for speaker identification for the first time in the literature. In addition, CVA is evaluated for the first time for speaker identification using hybrid deep learning algorithms. The study includes Recurrent Neural Network-Long Short-Term Memory (RNN-LSTM), i-vector + Probabilistic Linear Discriminant Analysis (i-vector+PLDA), Time Delayed Neural Network (TDNN), AutoEncoder+Softmax (AE+Softmax), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Common Vector Approach (CVA), SF-CVA, HCF, and Alexnet classifiers for speaker identification. This study uses MNIST, TIMIT and Voxceleb1 databases for clean and noisy speech signals. Six different feature structures are tested in the study. The six different feature extraction approaches consist of Mel Frequency Cepstral Coefficients (MFCC)+Pitch, Gammatone Filter Bank Cepstral Coefficients (GTCC)+Pitch, MFCC+GTCC+Pitch+seven spectral features, spectrograms,i-vectors, and Alexnet feature vectors. High accuracy rates were obtained, especially in tests using SF-CVA. RNN-LSTM, i-vector+KNN, AE+Softmax, TDNN, and i-vector+HCF classifiers also gave high test accuracy rates.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"156 ","pages":"Article 104811"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of speaker identification performance using deep learning, machine learning, and novel subspace classifiers with multiple feature extraction techniques\",\"authors\":\"Serkan Keser ,&nbsp;Esra Gezer\",\"doi\":\"10.1016/j.dsp.2024.104811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Speaker identification is vital in various application domains, such as automation, security, and enhancing user experience. In the literature, convolutional neural network (CNN) or recurrent neural network (RNN) classifiers are generally used due to the one-dimensional time series of speech signals. However, new approaches using subspace classifiers are also crucial in speaker identification. In this study, in addition to the newly developed subspace classifiers for speaker identification, traditional classification algorithms, and various hybrid algorithms are analyzed in terms of performance. Stacked Features-Common Vector Approach (SF-CVA) and Hybrid CVA-Fisher Linear Discriminant Analysis (HCF) subspace classifiers are used for speaker identification for the first time in the literature. In addition, CVA is evaluated for the first time for speaker identification using hybrid deep learning algorithms. The study includes Recurrent Neural Network-Long Short-Term Memory (RNN-LSTM), i-vector + Probabilistic Linear Discriminant Analysis (i-vector+PLDA), Time Delayed Neural Network (TDNN), AutoEncoder+Softmax (AE+Softmax), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Common Vector Approach (CVA), SF-CVA, HCF, and Alexnet classifiers for speaker identification. This study uses MNIST, TIMIT and Voxceleb1 databases for clean and noisy speech signals. Six different feature structures are tested in the study. The six different feature extraction approaches consist of Mel Frequency Cepstral Coefficients (MFCC)+Pitch, Gammatone Filter Bank Cepstral Coefficients (GTCC)+Pitch, MFCC+GTCC+Pitch+seven spectral features, spectrograms,i-vectors, and Alexnet feature vectors. High accuracy rates were obtained, especially in tests using SF-CVA. RNN-LSTM, i-vector+KNN, AE+Softmax, TDNN, and i-vector+HCF classifiers also gave high test accuracy rates.</div></div>\",\"PeriodicalId\":51011,\"journal\":{\"name\":\"Digital Signal Processing\",\"volume\":\"156 \",\"pages\":\"Article 104811\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1051200424004366\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200424004366","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在自动化、安全和提升用户体验等多个应用领域,说话人识别都至关重要。由于语音信号是一维时间序列,因此文献中通常使用卷积神经网络(CNN)或递归神经网络(RNN)分类器。然而,使用子空间分类器的新方法对于扬声器识别也至关重要。在本研究中,除了新开发的用于扬声器识别的子空间分类器外,还分析了传统分类算法和各种混合算法的性能。堆叠特征-通用向量法(SF-CVA)和混合 CVA-费舍线性判别分析(HCF)子空间分类器在文献中首次用于说话人识别。此外,还首次评估了使用混合深度学习算法进行说话人识别的 CVA。该研究包括用于识别说话人的递归神经网络-长短期记忆(RNN-LSTM)、i-vector + 概率线性判别分析(i-vector+PLDA)、延时神经网络(TDNN)、自动编码器+软最大值(AE+Softmax)、K-近邻(KNN)、支持向量机(SVM)、共向量方法(CVA)、SF-CVA、HCF 和 Alexnet 分类器。本研究使用 MNIST、TIMIT 和 Voxceleb1 数据库来处理干净和有噪声的语音信号。研究中测试了六种不同的特征结构。这六种不同的特征提取方法包括 Mel Frequency Cepstral Coefficients (MFCC)+Pitch, Gammatone Filter Bank Cepstral Coefficients (GTCC)+Pitch, MFCC+GTCC+Pitch+seven spectral features, spectrograms, i-vectors, 和 Alexnet feature vectors。特别是在使用 SF-CVA 的测试中,获得了很高的准确率。RNN-LSTM、i-vector+KNN、AE+Softmax、TDNN 和 i-vector+HCF分类器的测试准确率也很高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative analysis of speaker identification performance using deep learning, machine learning, and novel subspace classifiers with multiple feature extraction techniques
Speaker identification is vital in various application domains, such as automation, security, and enhancing user experience. In the literature, convolutional neural network (CNN) or recurrent neural network (RNN) classifiers are generally used due to the one-dimensional time series of speech signals. However, new approaches using subspace classifiers are also crucial in speaker identification. In this study, in addition to the newly developed subspace classifiers for speaker identification, traditional classification algorithms, and various hybrid algorithms are analyzed in terms of performance. Stacked Features-Common Vector Approach (SF-CVA) and Hybrid CVA-Fisher Linear Discriminant Analysis (HCF) subspace classifiers are used for speaker identification for the first time in the literature. In addition, CVA is evaluated for the first time for speaker identification using hybrid deep learning algorithms. The study includes Recurrent Neural Network-Long Short-Term Memory (RNN-LSTM), i-vector + Probabilistic Linear Discriminant Analysis (i-vector+PLDA), Time Delayed Neural Network (TDNN), AutoEncoder+Softmax (AE+Softmax), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Common Vector Approach (CVA), SF-CVA, HCF, and Alexnet classifiers for speaker identification. This study uses MNIST, TIMIT and Voxceleb1 databases for clean and noisy speech signals. Six different feature structures are tested in the study. The six different feature extraction approaches consist of Mel Frequency Cepstral Coefficients (MFCC)+Pitch, Gammatone Filter Bank Cepstral Coefficients (GTCC)+Pitch, MFCC+GTCC+Pitch+seven spectral features, spectrograms,i-vectors, and Alexnet feature vectors. High accuracy rates were obtained, especially in tests using SF-CVA. RNN-LSTM, i-vector+KNN, AE+Softmax, TDNN, and i-vector+HCF classifiers also gave high test accuracy rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Digital Signal Processing
Digital Signal Processing 工程技术-工程:电子与电气
CiteScore
5.30
自引率
17.20%
发文量
435
审稿时长
66 days
期刊介绍: Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal. The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as: • big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,
期刊最新文献
Adaptive polarimetric persymmetric detection for distributed subspace targets in lognormal texture clutter MFFR-net: Multi-scale feature fusion and attentive recalibration network for deep neural speech enhancement PV-YOLO: A lightweight pedestrian and vehicle detection model based on improved YOLOv8 Efficient recurrent real video restoration IGGCN: Individual-guided graph convolution network for pedestrian trajectory prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1