{"title":"对温度不敏感且经济高效的分布式掺氮光纤传感器","authors":"Arnaldo Leal-Junior , Wilfried Blanc","doi":"10.1016/j.yofte.2024.103995","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents the development of a cost-effective distributed optical fiber sensor for temperature-insensitive assessment of mechanical disturbances along an optical fiber cable. The proposed sensor system uses a nanoparticle (NP)-doped optical fiber with enhanced Rayleigh backscattering to provide higher sensitivity and spatial resolution using the transmission and reflection analysis (TRA) approach, where the transmitted and backscattered optical powers are analyzed as a function of the mechanical disturbance. In addition, Fiber Bragg Gratings (FBGs) are used as wavelength filters to provide the wavelength division multiplexing of the proposed device, which enable the use of 3 different NP-doped optical fiber sections for simultaneous detection of multiple curvature conditions in a cost-effective distributed sensing approach. The sensor characterization tests are performed by means of applying curvature angles from 360° to 1080° at different positions along NP-doped fibers (namely 25 mm, 100 mm and 175 mm) at 4 different temperatures of 25 °C, 30 °C, 40 °C and 50 °C. The results indicate the feasibility of the proposed approach, where the temperature variations lead only to a wavelength shift of the Bragg wavelength, whereas the mechanical disturbances (the curvatures) lead only to variations in the transmitted and reflected optical powers. Thus, by analyzing the transmitted and reflected optical powers in conjunction with the Bragg wavelength shift, it is possible to estimate both the mechanical disturbance amplitude (i.e., curvature angle) and the position along each NP-doped optical fiber section. Results indicate a relative error of around 3 % and 4 % for the mechanical disturbance location and absolute value, respectively. Moreover, the temperature cross-sensitivity in this case is below 2 % considering both amplitude and location of the mechanical disturbance. The proposed approach can be applied in structural health monitoring of different types of structures by integrating the fibers in the structures themselves with the possibility of measuring the strain distribution along the fibers (instead of in different points along the fiber) using a lower cost hardware when compared with similar distributed optical fiber sensing approaches.</div></div>","PeriodicalId":19663,"journal":{"name":"Optical Fiber Technology","volume":"88 ","pages":"Article 103995"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature-insensitive and cost-effective distributed NP-Doped optical fiber sensors\",\"authors\":\"Arnaldo Leal-Junior , Wilfried Blanc\",\"doi\":\"10.1016/j.yofte.2024.103995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents the development of a cost-effective distributed optical fiber sensor for temperature-insensitive assessment of mechanical disturbances along an optical fiber cable. The proposed sensor system uses a nanoparticle (NP)-doped optical fiber with enhanced Rayleigh backscattering to provide higher sensitivity and spatial resolution using the transmission and reflection analysis (TRA) approach, where the transmitted and backscattered optical powers are analyzed as a function of the mechanical disturbance. In addition, Fiber Bragg Gratings (FBGs) are used as wavelength filters to provide the wavelength division multiplexing of the proposed device, which enable the use of 3 different NP-doped optical fiber sections for simultaneous detection of multiple curvature conditions in a cost-effective distributed sensing approach. The sensor characterization tests are performed by means of applying curvature angles from 360° to 1080° at different positions along NP-doped fibers (namely 25 mm, 100 mm and 175 mm) at 4 different temperatures of 25 °C, 30 °C, 40 °C and 50 °C. The results indicate the feasibility of the proposed approach, where the temperature variations lead only to a wavelength shift of the Bragg wavelength, whereas the mechanical disturbances (the curvatures) lead only to variations in the transmitted and reflected optical powers. Thus, by analyzing the transmitted and reflected optical powers in conjunction with the Bragg wavelength shift, it is possible to estimate both the mechanical disturbance amplitude (i.e., curvature angle) and the position along each NP-doped optical fiber section. Results indicate a relative error of around 3 % and 4 % for the mechanical disturbance location and absolute value, respectively. Moreover, the temperature cross-sensitivity in this case is below 2 % considering both amplitude and location of the mechanical disturbance. The proposed approach can be applied in structural health monitoring of different types of structures by integrating the fibers in the structures themselves with the possibility of measuring the strain distribution along the fibers (instead of in different points along the fiber) using a lower cost hardware when compared with similar distributed optical fiber sensing approaches.</div></div>\",\"PeriodicalId\":19663,\"journal\":{\"name\":\"Optical Fiber Technology\",\"volume\":\"88 \",\"pages\":\"Article 103995\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Fiber Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1068520024003407\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Fiber Technology","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1068520024003407","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Temperature-insensitive and cost-effective distributed NP-Doped optical fiber sensors
This paper presents the development of a cost-effective distributed optical fiber sensor for temperature-insensitive assessment of mechanical disturbances along an optical fiber cable. The proposed sensor system uses a nanoparticle (NP)-doped optical fiber with enhanced Rayleigh backscattering to provide higher sensitivity and spatial resolution using the transmission and reflection analysis (TRA) approach, where the transmitted and backscattered optical powers are analyzed as a function of the mechanical disturbance. In addition, Fiber Bragg Gratings (FBGs) are used as wavelength filters to provide the wavelength division multiplexing of the proposed device, which enable the use of 3 different NP-doped optical fiber sections for simultaneous detection of multiple curvature conditions in a cost-effective distributed sensing approach. The sensor characterization tests are performed by means of applying curvature angles from 360° to 1080° at different positions along NP-doped fibers (namely 25 mm, 100 mm and 175 mm) at 4 different temperatures of 25 °C, 30 °C, 40 °C and 50 °C. The results indicate the feasibility of the proposed approach, where the temperature variations lead only to a wavelength shift of the Bragg wavelength, whereas the mechanical disturbances (the curvatures) lead only to variations in the transmitted and reflected optical powers. Thus, by analyzing the transmitted and reflected optical powers in conjunction with the Bragg wavelength shift, it is possible to estimate both the mechanical disturbance amplitude (i.e., curvature angle) and the position along each NP-doped optical fiber section. Results indicate a relative error of around 3 % and 4 % for the mechanical disturbance location and absolute value, respectively. Moreover, the temperature cross-sensitivity in this case is below 2 % considering both amplitude and location of the mechanical disturbance. The proposed approach can be applied in structural health monitoring of different types of structures by integrating the fibers in the structures themselves with the possibility of measuring the strain distribution along the fibers (instead of in different points along the fiber) using a lower cost hardware when compared with similar distributed optical fiber sensing approaches.
期刊介绍:
Innovations in optical fiber technology are revolutionizing world communications. Newly developed fiber amplifiers allow for direct transmission of high-speed signals over transcontinental distances without the need for electronic regeneration. Optical fibers find new applications in data processing. The impact of fiber materials, devices, and systems on communications in the coming decades will create an abundance of primary literature and the need for up-to-date reviews.
Optical Fiber Technology: Materials, Devices, and Systems is a new cutting-edge journal designed to fill a need in this rapidly evolving field for speedy publication of regular length papers. Both theoretical and experimental papers on fiber materials, devices, and system performance evaluation and measurements are eligible, with emphasis on practical applications.