Andrew Chong , Jessica Joshua , Shari Raheb , Ananda Pires , Michelle Colpitts , Jeff L. Caswell , Sonja Fonfara
{"title":"评估猫肥厚型心肌病的潜在新型生物标记物","authors":"Andrew Chong , Jessica Joshua , Shari Raheb , Ananda Pires , Michelle Colpitts , Jeff L. Caswell , Sonja Fonfara","doi":"10.1016/j.rvsc.2024.105430","DOIUrl":null,"url":null,"abstract":"<div><div>Hypertrophic cardiomyopathy (HCM) is the most common cardiomyopathy in cats. The diagnosis can be difficult, requiring advanced echocardiographic skills. Additionally, circulating biomarkers (N-terminal pro-B type natriuretic peptide and cardiac troponin I) have several limitations when used for HCM screening. In previous work, we identified interleukin 18 (IL-18), insulin-like growth factor binding protein 2 (IGFBP-2), brain-type glycogen phosphorylase B (PYGB), and WNT Family Member 5 A (WNT5A) as myocardial genes that show significant differential expression between cats with HCM and healthy cats. The products of these genes are released into the circulation, and we hypothesized that IL-18, IGFBP-2, PYGB, and WNT5A serum RNA and protein concentrations differ between healthy cats, cats with subclinical HCM, and those with HCM and congestive heart failure (HCM + CHF).</div><div>Reverse transcriptase quantitative polymerase chain reaction (RTqPCR) and enzyme-linked immunosorbent assay (ELISA) were applied to evaluate gene and protein expression, respectively, in the serum of eight healthy controls, eight cats with subclinical HCM, and six cats with HCM + CHF. Serum IGFBP-2 RNA concentrations were significantly different among groups and were highest in cats with subclinical HCM. Compared to healthy controls, serum IL-18 and WNT5A gene expression were significantly higher in cats with HCM + CHF, and WNT5A was higher in cats with subclinical HCM. No differences were observed for PYGB.</div><div>These results indicate that further investigation via large scale clinical studies for IGFBP-2, WNT5A, and IL-18 may be valuable in diagnosing and staging feline HCM.</div></div>","PeriodicalId":21083,"journal":{"name":"Research in veterinary science","volume":"180 ","pages":"Article 105430"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of potential novel biomarkers for feline hypertrophic cardiomyopathy\",\"authors\":\"Andrew Chong , Jessica Joshua , Shari Raheb , Ananda Pires , Michelle Colpitts , Jeff L. Caswell , Sonja Fonfara\",\"doi\":\"10.1016/j.rvsc.2024.105430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hypertrophic cardiomyopathy (HCM) is the most common cardiomyopathy in cats. The diagnosis can be difficult, requiring advanced echocardiographic skills. Additionally, circulating biomarkers (N-terminal pro-B type natriuretic peptide and cardiac troponin I) have several limitations when used for HCM screening. In previous work, we identified interleukin 18 (IL-18), insulin-like growth factor binding protein 2 (IGFBP-2), brain-type glycogen phosphorylase B (PYGB), and WNT Family Member 5 A (WNT5A) as myocardial genes that show significant differential expression between cats with HCM and healthy cats. The products of these genes are released into the circulation, and we hypothesized that IL-18, IGFBP-2, PYGB, and WNT5A serum RNA and protein concentrations differ between healthy cats, cats with subclinical HCM, and those with HCM and congestive heart failure (HCM + CHF).</div><div>Reverse transcriptase quantitative polymerase chain reaction (RTqPCR) and enzyme-linked immunosorbent assay (ELISA) were applied to evaluate gene and protein expression, respectively, in the serum of eight healthy controls, eight cats with subclinical HCM, and six cats with HCM + CHF. Serum IGFBP-2 RNA concentrations were significantly different among groups and were highest in cats with subclinical HCM. Compared to healthy controls, serum IL-18 and WNT5A gene expression were significantly higher in cats with HCM + CHF, and WNT5A was higher in cats with subclinical HCM. No differences were observed for PYGB.</div><div>These results indicate that further investigation via large scale clinical studies for IGFBP-2, WNT5A, and IL-18 may be valuable in diagnosing and staging feline HCM.</div></div>\",\"PeriodicalId\":21083,\"journal\":{\"name\":\"Research in veterinary science\",\"volume\":\"180 \",\"pages\":\"Article 105430\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in veterinary science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034528824002972\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in veterinary science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034528824002972","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
Evaluation of potential novel biomarkers for feline hypertrophic cardiomyopathy
Hypertrophic cardiomyopathy (HCM) is the most common cardiomyopathy in cats. The diagnosis can be difficult, requiring advanced echocardiographic skills. Additionally, circulating biomarkers (N-terminal pro-B type natriuretic peptide and cardiac troponin I) have several limitations when used for HCM screening. In previous work, we identified interleukin 18 (IL-18), insulin-like growth factor binding protein 2 (IGFBP-2), brain-type glycogen phosphorylase B (PYGB), and WNT Family Member 5 A (WNT5A) as myocardial genes that show significant differential expression between cats with HCM and healthy cats. The products of these genes are released into the circulation, and we hypothesized that IL-18, IGFBP-2, PYGB, and WNT5A serum RNA and protein concentrations differ between healthy cats, cats with subclinical HCM, and those with HCM and congestive heart failure (HCM + CHF).
Reverse transcriptase quantitative polymerase chain reaction (RTqPCR) and enzyme-linked immunosorbent assay (ELISA) were applied to evaluate gene and protein expression, respectively, in the serum of eight healthy controls, eight cats with subclinical HCM, and six cats with HCM + CHF. Serum IGFBP-2 RNA concentrations were significantly different among groups and were highest in cats with subclinical HCM. Compared to healthy controls, serum IL-18 and WNT5A gene expression were significantly higher in cats with HCM + CHF, and WNT5A was higher in cats with subclinical HCM. No differences were observed for PYGB.
These results indicate that further investigation via large scale clinical studies for IGFBP-2, WNT5A, and IL-18 may be valuable in diagnosing and staging feline HCM.
期刊介绍:
Research in Veterinary Science is an International multi-disciplinary journal publishing original articles, reviews and short communications of a high scientific and ethical standard in all aspects of veterinary and biomedical research.
The primary aim of the journal is to inform veterinary and biomedical scientists of significant advances in veterinary and related research through prompt publication and dissemination. Secondly, the journal aims to provide a general multi-disciplinary forum for discussion and debate of news and issues concerning veterinary science. Thirdly, to promote the dissemination of knowledge to a broader range of professions, globally.
High quality papers on all species of animals are considered, particularly those considered to be of high scientific importance and originality, and with interdisciplinary interest. The journal encourages papers providing results that have clear implications for understanding disease pathogenesis and for the development of control measures or treatments, as well as those dealing with a comparative biomedical approach, which represents a substantial improvement to animal and human health.
Studies without a robust scientific hypothesis or that are preliminary, or of weak originality, as well as negative results, are not appropriate for the journal. Furthermore, observational approaches, case studies or field reports lacking an advancement in general knowledge do not fall within the scope of the journal.