{"title":"作为潜在抗乳腺癌药物的吲哚类似物:设计、合成、使用 DFT 进行体外生物评估、分子对接和 ADMET 研究","authors":"Renu Gavadia , Jyoti Rasgania , Neetu Sahu , Surendra Nimesh , Lacy Loveleen , Satbir Mor , Devender Singh , Komal Jakhar","doi":"10.1016/j.jics.2024.101404","DOIUrl":null,"url":null,"abstract":"<div><div>Being a belligerent malignancy, triple-negative breast cancer poses unmet clinical challenges due to lack of targeted therapy, rapid growth rate and metastasis, high heterogeneity, and increased risk of recurrence. Diverse 1-(<em>1H</em>-indol-1-yl)-2-((5-aryl-<em>4H</em>-1,2,4-triazol-3-yl)thio))ethanones have been synthesized in substantial yield (81-87 %) by clubbing 1-(chloroacetyl)indoles with substituted triazoles under refluxing conditions of 4-5 h. The indole integrates demonstrated substantial antitumor efficacy in the MTT assay against the MDA-MB-231 cell line and substituting indole moiety with a halogen (bromo) significantly improves the anti-breast cancer action of the synthesized hybrids compared to the unsubstituted ring. Compound <strong>4i</strong> featuring halogen substituent on both the indole and phenyl moieties displayed the highest anticancer action with an IC<sub>50</sub> value of 2.121 μM The synthetic variants exhibited a notable binding propensity against the EGFR-TK receptor (PDB ID:<span><span>1M17</span><svg><path></path></svg></span>). Through <em>in-silico</em> ADMET screening, the pharmacological proclivity of the title compounds has been convicted. The notable bioactivity of the indole hybrids projects them as a potential lead in developing anti-breast cancer medications, especially against TNBC.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"101 11","pages":"Article 101404"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indole analogs as potential anti-breast cancer agents: Design, synthesis, in-vitro bioevaluation with DFT, molecular docking and ADMET studies\",\"authors\":\"Renu Gavadia , Jyoti Rasgania , Neetu Sahu , Surendra Nimesh , Lacy Loveleen , Satbir Mor , Devender Singh , Komal Jakhar\",\"doi\":\"10.1016/j.jics.2024.101404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Being a belligerent malignancy, triple-negative breast cancer poses unmet clinical challenges due to lack of targeted therapy, rapid growth rate and metastasis, high heterogeneity, and increased risk of recurrence. Diverse 1-(<em>1H</em>-indol-1-yl)-2-((5-aryl-<em>4H</em>-1,2,4-triazol-3-yl)thio))ethanones have been synthesized in substantial yield (81-87 %) by clubbing 1-(chloroacetyl)indoles with substituted triazoles under refluxing conditions of 4-5 h. The indole integrates demonstrated substantial antitumor efficacy in the MTT assay against the MDA-MB-231 cell line and substituting indole moiety with a halogen (bromo) significantly improves the anti-breast cancer action of the synthesized hybrids compared to the unsubstituted ring. Compound <strong>4i</strong> featuring halogen substituent on both the indole and phenyl moieties displayed the highest anticancer action with an IC<sub>50</sub> value of 2.121 μM The synthetic variants exhibited a notable binding propensity against the EGFR-TK receptor (PDB ID:<span><span>1M17</span><svg><path></path></svg></span>). Through <em>in-silico</em> ADMET screening, the pharmacological proclivity of the title compounds has been convicted. The notable bioactivity of the indole hybrids projects them as a potential lead in developing anti-breast cancer medications, especially against TNBC.</div></div>\",\"PeriodicalId\":17276,\"journal\":{\"name\":\"Journal of the Indian Chemical Society\",\"volume\":\"101 11\",\"pages\":\"Article 101404\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Indian Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001945222400284X\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001945222400284X","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Indole analogs as potential anti-breast cancer agents: Design, synthesis, in-vitro bioevaluation with DFT, molecular docking and ADMET studies
Being a belligerent malignancy, triple-negative breast cancer poses unmet clinical challenges due to lack of targeted therapy, rapid growth rate and metastasis, high heterogeneity, and increased risk of recurrence. Diverse 1-(1H-indol-1-yl)-2-((5-aryl-4H-1,2,4-triazol-3-yl)thio))ethanones have been synthesized in substantial yield (81-87 %) by clubbing 1-(chloroacetyl)indoles with substituted triazoles under refluxing conditions of 4-5 h. The indole integrates demonstrated substantial antitumor efficacy in the MTT assay against the MDA-MB-231 cell line and substituting indole moiety with a halogen (bromo) significantly improves the anti-breast cancer action of the synthesized hybrids compared to the unsubstituted ring. Compound 4i featuring halogen substituent on both the indole and phenyl moieties displayed the highest anticancer action with an IC50 value of 2.121 μM The synthetic variants exhibited a notable binding propensity against the EGFR-TK receptor (PDB ID:1M17). Through in-silico ADMET screening, the pharmacological proclivity of the title compounds has been convicted. The notable bioactivity of the indole hybrids projects them as a potential lead in developing anti-breast cancer medications, especially against TNBC.
期刊介绍:
The Journal of the Indian Chemical Society publishes original, fundamental, theorical, experimental research work of highest quality in all areas of chemistry, biochemistry, medicinal chemistry, electrochemistry, agrochemistry, chemical engineering and technology, food chemistry, environmental chemistry, etc.