静摩擦信息是否能预测软材料滑动的开始?

IF 3.4 3区 工程技术 Q1 MECHANICS International Journal of Solids and Structures Pub Date : 2024-09-28 DOI:10.1016/j.ijsolstr.2024.113087
Huixin Wei , Zhiyong Wang , Xinhao Tu , Xuanshi Cheng , Linan Li , Shibin Wang , Chuanwei Li
{"title":"静摩擦信息是否能预测软材料滑动的开始?","authors":"Huixin Wei ,&nbsp;Zhiyong Wang ,&nbsp;Xinhao Tu ,&nbsp;Xuanshi Cheng ,&nbsp;Linan Li ,&nbsp;Shibin Wang ,&nbsp;Chuanwei Li","doi":"10.1016/j.ijsolstr.2024.113087","DOIUrl":null,"url":null,"abstract":"<div><div>Friction behavior between soft and hard materials has long been a question of great interest in the fields of artificial joints, human skin contact, robotic grippers, and others. In this study, we presented a combination of theoretical and experimental analyses to investigate the friction behavior of soft materials. Using some geometric and stick–slip features in the early stage of static friction, the friction property of the interface between a soft material and a hard material is determined. Moreover, the onset of slip, the threshold force at which a friction interface begins to slide, is also predicted by a theoretical model. The predictive ability of this model may provide insights for improving interaction property recognition, as well as for developing fine tactile feedback and dexterous operation of robotic grasping.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"305 ","pages":"Article 113087"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Does static friction information predict the onset of sliding for soft material?\",\"authors\":\"Huixin Wei ,&nbsp;Zhiyong Wang ,&nbsp;Xinhao Tu ,&nbsp;Xuanshi Cheng ,&nbsp;Linan Li ,&nbsp;Shibin Wang ,&nbsp;Chuanwei Li\",\"doi\":\"10.1016/j.ijsolstr.2024.113087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Friction behavior between soft and hard materials has long been a question of great interest in the fields of artificial joints, human skin contact, robotic grippers, and others. In this study, we presented a combination of theoretical and experimental analyses to investigate the friction behavior of soft materials. Using some geometric and stick–slip features in the early stage of static friction, the friction property of the interface between a soft material and a hard material is determined. Moreover, the onset of slip, the threshold force at which a friction interface begins to slide, is also predicted by a theoretical model. The predictive ability of this model may provide insights for improving interaction property recognition, as well as for developing fine tactile feedback and dexterous operation of robotic grasping.</div></div>\",\"PeriodicalId\":14311,\"journal\":{\"name\":\"International Journal of Solids and Structures\",\"volume\":\"305 \",\"pages\":\"Article 113087\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Solids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020768324004463\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768324004463","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

长期以来,软硬材料之间的摩擦行为一直是人工关节、人体皮肤接触、机器人抓手等领域备受关注的问题。在本研究中,我们结合理论和实验分析,对软材料的摩擦行为进行了研究。利用静摩擦早期的一些几何特征和粘滑特征,确定了软材料和硬材料之间界面的摩擦特性。此外,理论模型还预测了滑移的起始点,即摩擦界面开始滑动的阈值力。该模型的预测能力可为改进交互属性识别、开发精细触觉反馈和机器人抓取的灵巧操作提供启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Does static friction information predict the onset of sliding for soft material?
Friction behavior between soft and hard materials has long been a question of great interest in the fields of artificial joints, human skin contact, robotic grippers, and others. In this study, we presented a combination of theoretical and experimental analyses to investigate the friction behavior of soft materials. Using some geometric and stick–slip features in the early stage of static friction, the friction property of the interface between a soft material and a hard material is determined. Moreover, the onset of slip, the threshold force at which a friction interface begins to slide, is also predicted by a theoretical model. The predictive ability of this model may provide insights for improving interaction property recognition, as well as for developing fine tactile feedback and dexterous operation of robotic grasping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
8.30%
发文量
405
审稿时长
70 days
期刊介绍: The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field. Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.
期刊最新文献
Editorial Board Modeling viscoelasticity–viscoplasticity of high-strain composites for space deployable structures Analytical and experimental studies on the sequential flaring-buckling behavior of combined bi-tubes in blind bolts Mechanics analysis and experimental study of ultra-thin chip peeling from pre-stretching substrates Characterizing and modeling the wide strain rate range behavior of air-filled open-cell polymeric foam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1