Yule Liu , Wantong Jiang , Wanlu Zhao , Lingxin Xu , Mengqi Wang , Jingjing Jian , Xiangwei Chen , Enheng Wang , Junxin Yan
{"title":"施用生物炭对土壤特性和盐胁迫下香蜂草生长的影响","authors":"Yule Liu , Wantong Jiang , Wanlu Zhao , Lingxin Xu , Mengqi Wang , Jingjing Jian , Xiangwei Chen , Enheng Wang , Junxin Yan","doi":"10.1016/j.scienta.2024.113704","DOIUrl":null,"url":null,"abstract":"<div><div>Soil salinization is one of the world's most seriously ecological issues. The application of biochar may enhance the properties of the soil and lessen the harm that salt stress causes to plants. In this study, we used the cuttings of <em>Melissa officinalis</em> as experimental materials. The method of pot experiment was used to explore to explore the effects of different concentrations of biochar (0, 10 %, and 20 % w/w) on soil properties and plant physiological characteristics under salt stress (0, 0.20 %, and 0.60 % NaCl+Na<sub>2</sub>SO<sub>4</sub>). The results indicate that the physicochemical properties of soil and the plant growth were decreased impacted with increasing salinity level, and these negative impacts were decreased traits were improved with the application of biochar. It was discovered that the application of biochar could increase the soil water holding capacity, total porosity, available P and K content, and soil enzyme activity while also decreasing the soil bulk density under salt stress. Biochar addition promoted the accumulation of plant biomass and the acquisition of nutrients, and reduced Na content in plants. With the addition of biochar, malondialdehyde (MDA) content and electrolyte leakage displayed a significant decrease under salt stress. A reduction in the osmotic substances and secondary metabolite accumulation in the leaves was also evident. The presented results reveal that biochar can contribute to protect <em>M. officinalis</em> against salt stress by alleviating the oxidative stress. Among the test samples, the 20 % biochar application had the best performance, suggesting that this is an advantageous method for improving soil properties and lessening the harm caused by salt stress on <em>M. officinalis</em>.</div></div>","PeriodicalId":21679,"journal":{"name":"Scientia Horticulturae","volume":"338 ","pages":"Article 113704"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of biochar application on soil properties and the growth of Melissa officinalis L. under salt stress\",\"authors\":\"Yule Liu , Wantong Jiang , Wanlu Zhao , Lingxin Xu , Mengqi Wang , Jingjing Jian , Xiangwei Chen , Enheng Wang , Junxin Yan\",\"doi\":\"10.1016/j.scienta.2024.113704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Soil salinization is one of the world's most seriously ecological issues. The application of biochar may enhance the properties of the soil and lessen the harm that salt stress causes to plants. In this study, we used the cuttings of <em>Melissa officinalis</em> as experimental materials. The method of pot experiment was used to explore to explore the effects of different concentrations of biochar (0, 10 %, and 20 % w/w) on soil properties and plant physiological characteristics under salt stress (0, 0.20 %, and 0.60 % NaCl+Na<sub>2</sub>SO<sub>4</sub>). The results indicate that the physicochemical properties of soil and the plant growth were decreased impacted with increasing salinity level, and these negative impacts were decreased traits were improved with the application of biochar. It was discovered that the application of biochar could increase the soil water holding capacity, total porosity, available P and K content, and soil enzyme activity while also decreasing the soil bulk density under salt stress. Biochar addition promoted the accumulation of plant biomass and the acquisition of nutrients, and reduced Na content in plants. With the addition of biochar, malondialdehyde (MDA) content and electrolyte leakage displayed a significant decrease under salt stress. A reduction in the osmotic substances and secondary metabolite accumulation in the leaves was also evident. The presented results reveal that biochar can contribute to protect <em>M. officinalis</em> against salt stress by alleviating the oxidative stress. Among the test samples, the 20 % biochar application had the best performance, suggesting that this is an advantageous method for improving soil properties and lessening the harm caused by salt stress on <em>M. officinalis</em>.</div></div>\",\"PeriodicalId\":21679,\"journal\":{\"name\":\"Scientia Horticulturae\",\"volume\":\"338 \",\"pages\":\"Article 113704\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientia Horticulturae\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304423824008574\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Horticulturae","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304423824008574","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
Effects of biochar application on soil properties and the growth of Melissa officinalis L. under salt stress
Soil salinization is one of the world's most seriously ecological issues. The application of biochar may enhance the properties of the soil and lessen the harm that salt stress causes to plants. In this study, we used the cuttings of Melissa officinalis as experimental materials. The method of pot experiment was used to explore to explore the effects of different concentrations of biochar (0, 10 %, and 20 % w/w) on soil properties and plant physiological characteristics under salt stress (0, 0.20 %, and 0.60 % NaCl+Na2SO4). The results indicate that the physicochemical properties of soil and the plant growth were decreased impacted with increasing salinity level, and these negative impacts were decreased traits were improved with the application of biochar. It was discovered that the application of biochar could increase the soil water holding capacity, total porosity, available P and K content, and soil enzyme activity while also decreasing the soil bulk density under salt stress. Biochar addition promoted the accumulation of plant biomass and the acquisition of nutrients, and reduced Na content in plants. With the addition of biochar, malondialdehyde (MDA) content and electrolyte leakage displayed a significant decrease under salt stress. A reduction in the osmotic substances and secondary metabolite accumulation in the leaves was also evident. The presented results reveal that biochar can contribute to protect M. officinalis against salt stress by alleviating the oxidative stress. Among the test samples, the 20 % biochar application had the best performance, suggesting that this is an advantageous method for improving soil properties and lessening the harm caused by salt stress on M. officinalis.
期刊介绍:
Scientia Horticulturae is an international journal publishing research related to horticultural crops. Articles in the journal deal with open or protected production of vegetables, fruits, edible fungi and ornamentals under temperate, subtropical and tropical conditions. Papers in related areas (biochemistry, micropropagation, soil science, plant breeding, plant physiology, phytopathology, etc.) are considered, if they contain information of direct significance to horticulture. Papers on the technical aspects of horticulture (engineering, crop processing, storage, transport etc.) are accepted for publication only if they relate directly to the living product. In the case of plantation crops, those yielding a product that may be used fresh (e.g. tropical vegetables, citrus, bananas, and other fruits) will be considered, while those papers describing the processing of the product (e.g. rubber, tobacco, and quinine) will not. The scope of the journal includes all horticultural crops but does not include speciality crops such as, medicinal crops or forestry crops, such as bamboo. Basic molecular studies without any direct application in horticulture will not be considered for this journal.